Argonne Scientists Spearhead Bioinformatics Research

By Nicole Hemsoth

January 6, 2006

Just as computers assist detectives in finding people by comparing fingerprints from crime scenes with millions in databases, Argonne National Laboratory scientists are using computers to mine genetic information from pathogens, people and plants. This information is essential to progress in medical science and biotechnology.

“The biology revolution came about with the massive sequencing of the genomes,” said Natalia Maltsev, head of Argonne's bioinformatics group in the Mathematics and Computer Science Division. “Genomes are in essence the blueprints of the organisms. Currently there are 294 completely sequenced genomes publicly available, and more than 1,500 are in the pipeline.

“When the genomes are sequenced, it is just an alphabet soup,” Maltsev said. The genomic data provide a string of letter-pairs that represent a genome's chemical bases.” The string is long – the human genome alone has 3 billion base pairs. “The information is in there, but we need to extract it.”

By comparing data, these researchers can take a small amount of known information from one genome – for example, genes involved in energy production – and compare it to all other genomes. If the same sequences are found in other genomes, that solves a small segment of the genome under study.

Piecing these bits of biological information together by using computers is a relatively new field called bioinformatics. Argonne researchers are the first in the field of bioinformatics to use hundreds of computers around the clock to analyze genomic information.

For example, comparison of pathogenic and nonpathogenic Mycobacterium species revealed that these strains differ by several genes – which means that these genes can be implicated in causing disease. Knowing these genes, computers can seek them out in other genomes, and when they are found, their presence tells researchers that organism is potentially pathogenic. Medical researchers can use this data to develop treatments.

Argonne's contributions to bioinformatics include developing databases and analytical tools using an Argonne-developed technology to perform rapid calculations, and guiding biological research.

This bioinformatics research is a key component of Argonne's multi-million dollar, multi-disciplinary structural biology program, which provides bioinformatics guidance to researchers that can reduce the cost of identifying unique structures of medical and biotechnological significance.

Argonne's computational biologists have created databases and tools to extract important information from the genetic “alphabet soup.” Their main database, PUMA2, combines information from 22 databases.

“We set up PUMA2,” Maltsev said, “because we are interested in evolution – the fundamental questions – what is the same and what is different in each organism and how it affects function.”

The team has also developed “Pathos” and “Chisel,” software tools that work with PUMA to search for specific interests. Pathos is a database for biodefense research. It contains all publicly available genomes of pathogens, including Bacillus anthracis (anthrax) and Yersinia pestis (plague). Chisel enables identification of eukaryotic (muti-celled organisms) and bacterial versions of the same enzyme functions.

The bioinformatics group coupled its extensive network of data and tools with the Grid. Grid technology, spearheaded at Argonne, allows supercomputers in different locations to work together seamlessly. With this kind of computing power, researchers can perform in one week comparisons that would take 18 months for researchers using a single computer.

Elizabeth Glass, a member of Argonne's bioinformatics group, uses this combination of computing power and databases to guide researchers performing the more time-consuming and costly processes of structural biology to find unique structures to add to the databases.

Glass steers researchers at two National Institutes of Health-funded Regional Centers of Excellence – the Argonne-based Midwestern Center for Structural Genomics and the Great Lakes Regional Center for Excellence for Biodefense and Emerging Infectious Disease Research. The bioinformatics group also provides valuable resources for the National Institute of Health's Bioinformatics Research Center and National Microbial Pathogen Data Resource, and the Department of Energy's Microbial Genomes Program in the Office of Biological and Environmental Research.

“The work is fascinating,” said Maltsev, a medical doctor and immunologist. Immunology required her to “spend huge amounts of time to extract small facts. Now all of the biological information is at our disposal, and we can derive how evolution was working. We can see evolution because bacteria are similar to animals, and animals are similar to each other.”

The work is also varied. Argonne bioinformaticists are working with researchers at the Pacific Northwest National Laboratory to find an organism that can clean radioactive materials that have seeped into the ground under tanks at the Hanford site, which produced nuclear materials.

“There are organisms that actually live in this environment of boiling nitric acid with high levels of radiation,” Maltsev explains. “We are searching for microorganisms that could survive and even clean such an environment.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire