Simulating Real-World Engineering Flows at SDSC

By Nicole Hemsoth

January 6, 2006

With today's advanced technologies, it might seem that engineers design ship propellers, jet turbines, and scramjet engines using precise engineering methods that always yield perfectly efficient designs. But in fact the turbulent flows that occur in these devices are so complex that engineers are still forced to depend on trial and error experience and use approximate parameters in tasks from designing jet engines to predicting pollutant dispersal from industrial smokestacks.

Now, Krishnan Mahesh, associate professor in the Aerospace Engineering and Mechanics Department of the University of Minnesota, and his group are applying the enormous power of SDSC's DataStar and TeraGrid resources to conduct simulations of unprecedented realism. “Traditionally, such high-fidelity simulation methods have been restricted only to fairly simple geometries,” said Mahesh. “But massive parallel computing platforms such as DataStar at SDSC have now made it possible to simulate complex flows that would have been inconceivable a decade ago.”

What is novel about Mahesh's work is that the researchers have developed numerical methods and turbulence models that are flexible enough to handle real-world engineering geometries without compromising the accuracy needed to reliably simulate the complicated details of turbulence.

These simulations open the door to understanding the intricate details of turbulent flows in a range of real-world applications from ship propellers to jet engines and exotic hypersonic scramjet aircraft engines. This understanding can help engineers design better devices, as well as guiding researchers to new experiments that work in tandem with these high quality simulations to build greater understanding of these important engineering problems.

Propeller Crashback

Imagine a large ship steaming at full speed. Suddenly, the ship needs to stop or turn, and the captain throws the propeller into full reverse. This dramatic reversal produces large fluctuating forces that can sometimes break a propeller blade or impair the ability to steer the vessel.

While current engineering methods are adequate to simulate a propeller operating under normal design conditions, they are inadequate to model the unsteadiness in blade forces encountered in experiments and the real-world emergency crashback maneuver. To give engineers a simulation approach that can capture the full complexity of propeller crashback and help them predict required blade strength, Mahesh and graduate student Martin Vysohlid, supported by the Office of Naval Research, are performing Large-Eddy Simulations (LES) of the complex geometry and the 3-D flow around a reversing propeller. The simulations show low-frequency unsteadiness similar to what is observed in experiments, and torque and thrust coefficients significantly closer to experimental values than previous methods.

This project demonstrates the potential of Mahesh's simulation methodology to predict off-design conditions in marine environments, and the researchers plan to extend this work to investigating another hard-to-predict problem, blade cavitation, the disruptive bubbles that can form and collapse on propellers under extreme conditions.

Simulating Scramjets

As the Space Shuttle ages and the nation searches for cost-effective and reliable access to space, one promising technology is known as the scramjet, a supersonic combustion ramjet that can fly ten or more times the speed of sound at very high altitudes on the way to space. NASA successfully tested a scramjet in 2004.

But the design of such exotic engines is challenging, involving compressible turbulence in super- and hypersonic combustion and the interaction of shock waves with turbulent boundary layers, problems that defy current simulation capabilities. To give engineers tools to model these extreme flow regimes, Mahesh and graduate students Yucheng Hou and Jeffery Doom have developed a novel computational algorithm that can handle the special challenges of these extreme flows. This work is performed as part of the AFOSR-supported Center for Hypersonics at the University of Minnesota.

Jet in a Crossflow

Another important NSF-supported simulation, which Mahesh has run for more than 45,000 hours on SDSC's DataStar, is a jet emerging into a crossflow, for example, a plume of smoke rising from a smokestack. The researchers want to understand this in order to be able to reliably predict such problems as how far pollutants will spread from a smokestack and to help engineers design better gas-turbine combustors and fuel injectors.

Graduate student Suman Muppidi has used exact solutions of the flow equations, without approximations, known as known as Direct Numerical Simulations or DNS, to study how jets mix with crossflows. A key result the researchers have found is a significantly better scaling law for the jet trajectory, that is, they can better predict how the jet will curve as if moves out into the crossflow, in relation to such factors as the jet's speed and size and the speed of the crossflow.

Massive Computers

“SDSC supercomputers and staff have been central to our group's ability to achieve these important new research results,” said Mahesh. In the last year, his group has used 88,439 hours on DataStar, running on up to 1,024 processors; nearly 30,000 hours on the TeraGrid IBM P690 nodes at SDSC; and more than 100,000 hours on the distributed TeraGrid facility. “The fast I/O capability of DataStar is a very important feature in efficient execution of our large-scale simulations,” said Mahesh. “In addition, all our simulation results are archived in the multi-petabyte archiving facility that SDSC provides.”

In their simulations, analysis, and modeling of turbulent flows, Mahesh and his group focus on fundamental advances in both numerical algorithms and greater understanding of the flow physics. Computational methods include Large-Eddy Simulations (LES), which model the effect of small eddies on the larger-scale flow, and Direct Numerical Simulations (DNS), which solve the full Navier-Stokes equations describing the flow without approximations, using unstructured grids on massively parallel computing platforms.

In addition to the above projects, other simulations Mahesh's group and collaborators have conducted at SDSC include a first-time simulation of the turbulent flow inside a commercial gas-turbine combustor in which they developed their simulation methodology, which is now being adopted by industry. The success of these simulations is encouraging Mahesh and his group to proceed with further research, and in addition to using DataStar and the TeraGrid they also plan to conduct simulations using a one million hour allocation on SDSC's new Blue Gene supercomputer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This