CRAFT Tech Dives Deep Into CFD Visualization

By Bob Cramblitt

January 13, 2006

Combustion Research and Flow Technology, better known as CRAFT Tech, says it likes to swim in data.

Not just any data, of course. CRAFT Tech immerses itself in terabyte-sized datasets used to simulate complex fluid dynamic and combustive problems. To swim in these waters requires large-scale, parallel architecture computers running specialized CFD codes and the most advanced visualization software.

A recently completed project called HiFAST (High Frequency Acoustic Suppression Technology) showcased CRAFT Tech's ability to take full advantage of CFD visualizations at every phase of weapons system development. The project, conducted for the Air Force Research Laboratory's Air Vehicles Directorate (AFRL/VAAI), culminated in a successful flight test of a device that controls internal weapons bay airflow and acoustics
 
A new level of knowledge

HiFAST built on knowledge gained from the Active Separation Control (ASC) project, which led to a spoiler successfully tested in a Royal Australian Air Force (RAAF) F-111 fighter jet. The spoiler injects high-pressure air into the F-111's internal weapons bay to neutralize turbulence and ensure safe weapon separation.

With HiFAST, CRAFT Tech extended ASC research by developing a second-generation device that reduces weapons bay acoustics and requires less airflow than the ASC device. CFD was used throughout the project: from conceptual development, to validating wind tunnel tests, to supporting full-scale hardware testing.

The HiFAST project was a breakthrough because it went beyond the knowledge that a particular control system worked. It created a process for establishing how and why a design works. With that knowledge, engineers can make changes to a design and run “what if” scenarios.

“We can use these high-powered simulations to make design changes without being afraid of inaccuracies,” says Raj Sinha, vice president and technical director at CRAFT Tech. “We don't do simulation to replace other testing; we use it to develop knowledge of how to make a system behave the way we want it to.”

For the HiFAST project, that behavior involved two factors for the weapons bay: acoustics, and safe weapons separation. Noise from turbulent airflow fatigues metal and electronics systems, and makes it difficult to eject weapons. The need for weapons separation is obvious, but the issue has become more complex over the past decade as weapons have become smaller and more susceptible to aerodynamics.

The opening of an internal weapons bay causes highly sheared, turbulent airflow, according to Roger Birkbeck, senior design engineer at CRAFT Tech and program lead for the HiFAST project.

“Think of what would happen if you were driving in your car at 60 mph and threw a styrofoam cup out the window, or the 'wap, wap, wap' effect you get when you roll a car window down. Then, imagine that kind of effect at supersonic speeds.”

Opening weapons bay doors during flight creates an unstable transition area called a shear layer between the high-speed flow outside the bay and the slower flow inside. Pockets of rotating air, called vortices, rebound off the weapons bay walls, adversely affecting weapons pitch and creating acoustic waves that can damage the aircraft, its electronics systems, and even the weapons themselves.

CRAFT Tech's mission with HiFAST was to simulate airflow and acoustical scenarios, find out what caused problems, and design hardware that would provide a workable solution at supersonic speeds.

Anatomy of a simulation

As with all simulations, CRAFT Tech's start with a 3D solid model. Although with the HiFAST project, it wasn't that simple. The only fighter jet with an internal weapons bay is the F-111, still used by the RAAF, but long retired from service in the United States. The F-111 was developed in the mid-1960s, before CAD existed.

CRAFT Tech had to obtain measurements from an F-111 kept in storage by the U.S. Air Force. Based on the measurement data, a 3D model was created in SolidWorks software. The CAD model was imported into Gridgen software for meshing, then into CRAFT Tech's CFD solvers, CRUNCH and CRAFT.

CRUNCH, a multi-element, unstructured-grid Navier-Stokes code for complex geometries and multi-body problems, was used for solving weapons separation problems. CRAFT, a structured-grid Navier-Stokes code, was used for acoustical datasets that require higher accuracy.

“Acoustic simulation requires a fifth order of accuracy, compared to a second or third order for normal CFD,” says Sinha. “CRAFT enables us to handle 4D data – 3D models with the added dimension of changing phenomena over time.”

CRAFT Tech computed the massive airflow and acoustical problems using a combination of its in-house cluster of 96 Pentium-based PC processors and a dedicated T1 line providing access to DoD/NASA supercomputers.

Swimming in the data

Results from the simulations were imported into CEI's EnSight Gold visualization software through interfaces to CRAFT and CRUNCH. EnSight Gold's ability to take advantage of parallel processing – on both supercomputers and clusters – was the key to visualizing the complex datasets.

“Being able to use parallel processing to visualize unsteady phenomena is vital to our work,” says Sinha. “Looking at data at a single point in time is trivial. EnSight Gold enables us to animate the data to look at underlying fluctuations. We can create isosurfaces and vertices and track the evolution of quantities over space and time.”

A user-defined reader within EnSight Gold gave CRAFT Tech access to the variables it wanted to analyze, and cutting planes enabled those variables to be isolated for detailed study. CRAFT Tech also used multiple viewports that gave engineers the ability to look at different flow fields simultaneously.

“Being able to look at a large volume of data on the fly is key,” says Sinha. “That's what we call 'swimming in the data'.”

CRAFT Tech's simulations led to a solution that uses two 16-inch wide spoilers, each with two HiFAST air nozzles. The spoilers are installed in a false bulkhead in the front of the weapons bay. When the weapons bay opens, the spoilers descend a few inches and the HiFAST nozzles blast pressurized air in pulsating frequencies. The air from the HiFAST nozzles neutralizes turbulence within the bay, and reduces acoustics.

Translating into production

With the HiFAST design verified in real-world conditions, CRAFT Tech is working on a project called SEAR (Separation Enhanced Acoustic Reduction), aimed at creating a system that can be adapted to current and future aircraft. As demanding as the HiFAST project was, stakes are higher for SEAR, according to Srini Arunajatesan, the research scientist in charge of visualization at CRAFT Tech.

On the front end, CFD tools need to isolate calculations, and allow for separations and curvature effects. The range of calculations is wider – they must take into account the geometry for different types of aircraft, and then isolate the weapons bay, the weapons themselves, the actuator, and other factors.

Fortunately for CRAFT Tech, the pace of computing power and the software that takes advantage of it continues to advance at a blistering pace. CEI recently announced that it set a new 3D rendering record at Lawrence Livermore National Labs, reaching 3.17 billion polygons per second on a cluster of 76 standard dual-processor PCs.

That kind of computing and visualization power will no doubt make swimming in terabyte-sized datasets a lot easier for Sinha and his team.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire