Researchers Take Step Toward Faster Communication

By Nicole Hemsoth

January 13, 2006

By using electromagnetic waves instead of electrical current for switching, researchers have operated an optical modulator at terahertz frequencies – an accomplishment that could one day facilitate data transmission rates in the trillions of bits per second.

The work represents a key step toward a new generation of optical communication systems that would be as much as 100 times faster than current technology, bringing closer such applications as real-time telemedicine and movies on demand. While operating their terahertz modulator, the research team observed an effect that is well known in atomic physics – but until now hadn't been seen in the semiconductor materials that make up optical modulators.

“This is just one piece, but potentially a very important piece, of a very high bit-rate optical communication system for telecommunications and other applications,” said David Citrin, an associate professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “The point of the experiment was to show that we can operate a modulator at terahertz frequencies, though we are still a long way from a practical device.”

Supported by the National Science Foundation, the research was reported in the October 28, 2005 issue of the journal Science.

Existing telecommunication systems depend on modulators to encode data onto beams of light that then can be carried long distances by optical fibers. Modulators work by rapidly changing their reflectivity, which varies the intensity of light beams passing through them. These variations correspond to the ones and zeroes that are the language of digital communication.

Modulators are also used as switches to reroute data streams by alternately reflecting light or allowing it to pass.

But most current modulators have a drawback – they cannot operate faster than the electronic circuitry used to control them. To boost data speeds, researchers have been seeking alternative control technologies.

“Conventional optical modulators use a voltage change to alter the properties of a material which changes the reflectivity,” explained Citrin. “Electrically switched systems are just too slow to go much beyond where we are now. But by using very high frequency electromagnetic energy to modulate the signal, the hope is that we can generate signals that have much higher data rates than what we can achieve with today's electrical circuits.”

To gain those higher rates, Citrin and colleagues at the University of California, Santa Barbara and the NASA Ames Research Center used very high-frequency waves from a free-electron laser to control the modulator. These electromagnetic waves consist of an oscillating electric field and have the advantage of being able to move through free space without the need for circuitry.

“In principal, you can modulate light much more quickly than you can switch electrical current,” said Citrin, a theoretician who has been working as part of the team for more than a decade. “Instead of connecting the modulator to an electrical circuit, we placed it into the beam of the free-electron laser, a unique research facility at the University of California Santa Barbara.”

Because terahertz oscillation is difficult to measure directly with existing technology, the researchers used indirect means to verify the modulation speed.

Before this approach can lead to faster communication systems, the modulation must be optimized – and the remainder of the system advanced to terahertz speeds.

For example, researchers will have to develop inexpensive and convenient sources of the electromagnetic energy they use for switching. Another challenge will be to optimize the bit depth – the difference in light intensity that represents ones and zeros. And to minimize energy requirements, they must reduce the amount of power required to operate such a system. Finally, the other components of a communications system will also have to advance to terahertz operation

The research team, which included S.G. Carter, V. Birkedal, C.S. Wang, L.A. Coldren, A. V. Maslov and Mark Sherwin in addition to Citrin – also wants to understand the science of the modulation system.

“There is a lot of interesting science going on into how the modulation works,” Citrin said. “We want to understand the issues that influence the ultimate limits of the modulation rate. If we can really understand the physics, we should be able to understand the limits not only of the modulate rates, but also the modulation depth and what are the weakest fields we might be able to use.”

As part of the “signature” of terahertz operation, the researchers observed an effect known as the Autler-Townes Splitting. The effect is well-known in atomic physics, but the Science paper was the first report of it in the semiconductor quantum wells which are part of the modulator.

The splitting occurs when the devices are driven to operate at high frequencies, and its signature is a “double-peak” in the reflectivity of the quantum wells.

“This is an interesting physical effect that can change the optical properties of the medium from reflective to transparent,” explained Citrin. “That may have its own interest for many other applications as well.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire