Latest Optical Communication Technologies on Display

By Nicole Hemsoth

February 10, 2006

Researchers will announce some of the latest breakthroughs and innovations in optics-based communications at OFC/NFOEC 2006–the largest and most comprehensive international event for optical communications.
OFC/NFOEC (Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference) will take place at the Anaheim Convention Center between March 5 and 10, 2006.

In addition to a technical conference that spans the whole meeting, there will be an exposition featuring the latest in optical technology from more than 600 of the industry's key companies. The meeting is sponsored by the IEEE Communications Society, the IEEE Lasers and Electro-Optics Society, and the Optical Society of America.

The following represent some of the technical highlights at OFC/NFOEC 2006. Full papers and contact information for the authors may be obtained by contacting Colleen Morrison at 202.416.1437 or

1. Making Internet-Based Television Practical and Affordable
2. Pinpointing Structural Problems Earlier With Fiber Optics
3. Delivering Super-Broadband Wired and Wireless Services Simultaneously
4. E-Science: The Future Of Sharing Data
5. Thinking Inside the Box
6. Producing Economically Important Light
7. Manufacturing Photonic Integrated Circuits En Masse
8. 10G Networks Help Broadband Services Grow Faster than Moore's Law

1. Internet-Based Television: Making It Practical And Affordable

Combine high-speed telecommunications networks with the flexible techniques for sending data over the Internet, and you get IPTV, or Internet Protocol Television, a newly emerging method for delivering digital video to homes. Rather than broadcasting hundreds of channels at a time to every subscriber's home, IPTV provides individual content on demand, by efficiently storing both live broadcasts and stored video on a provider-wide network. IPTV can also blend in voice, Internet, and other services onto a single TV screen, while offering portability to subscribers to access the television channels to which they subscribe, on different user devices and/or locations (e.g., on their laptops and even in their friend's homes). Researchers at the meeting will describe techniques for implementing IPTV at affordable costs while leveraging existing infrastructure.

Samrat Kulkarni and his fellow engineers at Lucent Technologies Bell Labs will present models and case studies for “transport networks” between a provider's regional office and individual subscribers. Such transport networks contain the hardware to deliver high-speed signals to the curb, while giving telecom providers the freedom to reuse their own infrastructure (even old-fashioned copper cable) to deliver IPTV the rest of the way to their subscribers' homes. The authors modeled Lucent's IPTV transport system in various trial scenarios. The scenarios involved real world situations in which Lucent worked with different telecommunications service providers (carriers) to support currently existing infrastructure, which utilize both old and new telecom technologies. The methods and examples explained by the authors suggest a superior system for existing and future customers that will bring a convenient and cost-effective solution to loyal carrier customers, while at the same time helping carriers to achieve greater service options, with expanded bandwidth and higher speeds, for whatever telecommunications needs and advances may arise in the future. (Paper NWC1, “Access Transport Network for IPTV Video Distribution”)

2. Pinpointing Structural Problems Earlier with Fiber Optics

University of Ottawa physicists have demonstrated an optical system that detects problems in important structures, including natural-gas pipes and concrete columns, more precisely than before. Called the Distributed Brillouin Sensor (DBS), the system uses fiber optics to detect deformation, cracks, and bending in structures under real-world conditions. Already being considered for commercial production, the new system can catch much earlier signs of costly and dangerous structural failures than previously possible.

In one demonstration, conducted with civil engineers at the University of Ottawa, the researchers tested the DBS system on a concrete column encased with fiber-reinforced rods and sheets. Subjecting the column to simulated seismic forces such as those that would occur in an earthquake or tsunami, the researchers could detect signs of debonding (in which the concrete detached from the fiber casing) and the crushing of concrete as a result of compression forces. Unlike competing techniques, the system could readily tell the difference between debonding and crushing.

The Ottawa researchers say that DBS can prevent potentially life-threatening and environmentally damaging accidents and multimillion-dollar repairs. Unlike present structural health analysis, which is done on a spot-by-spot basis, DBS can detect problems over all points in the entire structure and pinpoint them to within 5 centimeters, while detecting mechanical strains as low as 20 microstrains, exceeding the 1-meter resolution and 50 microstrain levels that the construction industry has wanted and expected. In addition, the technique can improve the testing of structures and materials by providing valuable information during the testing process. (Paper OTuL7, “Distributed Brillouin Sensor Based on Brillouin Scattering for Structural Health Monitoring”)

3. Delivering Super-Broadband Wired and Wireless Services Simultaneously

Currently, telecommunications providers generally supply services that are either all-wireless (e.g. mobile phones) or all-wired (such as DSL and cable). If a customer wants wireless access from a cable modem, for example, he or she must purchase additional equipment.

Now, Gee-Kung Chang of the Georgia Institute of Technology and colleagues have designed and experimentally demonstrated a network that telecommunications providers could potentially use to simultaneously provide high-speed wired and wireless super broadband services with the same optical signal.

Using existing passive optical network (PON) infrastructure (which enables fiber-optics services to be delivered directly to homes) without the need for expensive electronic equipment, the design can simultaneously deliver broadband services such as high-definition television (HDTV) via an optical plug on a building wall and through a wireless network at a data rate of up to 2.5 Gigabits per second, significantly faster than the 100 Megabits per second in many current state-of-the-art Wi-Fi systems.

This hybrid technique can be incorporated into all-optical-fiber networks (also known as fiber-to-the-home, or FTTH networks) that telecom providers are currently deploying in business and residential areas. In their network system, the researchers first use standard techniques to “up-convert” a digitally modulated fiber-optic signal in the infrared range to one in the microwave or millimeter-wave range. This up-converted signal is split into two parts at the customer's premises, one that is detected by a high-speed receiver, then amplified before being transmitted as a wireless signal. The other part is sent directly to the plugs on a building wall via optical fibers. The key to this advance is the employment of low-cost optical receivers and amplifiers to provide the wired and wireless signals. Currently, the researchers are working with several service providers and equipment vendors to further develop their system into a product. (Paper OFM1, “Novel Optical-Wireless Access Network Architecture for Simultaneously Providing Broadband Wireless and Wired Services”)

4. E-Science: The Future of Sharing Data

Advances in high performance networks are enabling new frontiers of discovery. Large-scale research, often referred to as e-science, typically involves collaborative teams of scientists and scientific equipment located around the world. National governments and research organizations are investing in multimillion-dollar technical instruments (such as high-voltage electron microscopes) and facilities to collect vast amounts of raw data. However, numerous steps are involved, such as time-consuming person-to-person data queries, before information can be visualized and analyzed by joint research teams situated across countries or across multiple continents. What if particle physics data from the Large Hadron Collider, at CERN near Geneva, Switzerland, could be made available to researchers in Chicago, Bombay or Tokyo in real-time?

Gigi Karmous-Edwards of MCNC in Research Triangle Park, NC, envisions easily connecting researchers to remote data through new optical-fiber network configurations. Network-transport protocols and dynamic optical network configurations will be as essential as high-performance computing resources in order to solve complex scientific problems. She works as part of the Global Lambda Integrated Facility, an international community that supports data-intensive scientific research and helps develop middleware to coordinate the resources that e-science requires. Her talk will discuss some of the optical networking challenges that need to be solved as global e-science collaboration evolves. (Paper OWU3, Today's Optical Network Research Infrastructures for E-Science Applications)

5. Thinking Inside the Box: Square-Core Fiber Promises Faster, More Efficient Manufacture Of Flat-Panel Displays

John Hayes of the University of Southampton and his colleagues have designed, built and tested a new fiber with a square-shaped core rather than the traditional circle-shaped cross section. The square-core fiber may lead to faster, more cost-effective and more energy-efficient production of flat-panel display screens. The fiber may also be useful in medical procedures, device manufacturing and other industrial processes involving laser light.

In the manufacture of flat-panel displays, one can use lasers to remove, or ablate, rectangular-shaped regions from an electrically conducting coating (typically indium tin oxide, or ITO) on a glass screen. The ITO regions that remain form the electrodes for the RGB sub pixels. Presently, these electrodes are formed by expensive lithographic processes involving resist coating, exposure, developing and etching steps. It is possible to replace this multi-step complex process by a single-step laser-based technique. Current technology utilizes circular-core beams which are passed through a series of expensive, complicated optics to make a square-shaped beam. The overall efficiency of such a system is quite low such that high power lasers are required. In contrast, the square-core fiber can directly deliver an intense square shaped beam of light to make the electrodes much more efficiently.

This new fiber is a type of microstructured or “holey” fiber. Holey fibers have tiny holes running through them in a pattern that trap light in a solid core. In this carefully constructed fiber the holes are arranged in a square producing a very neat square beam of light.

According to Hayes, the fiber can accept a wide variety of input beams but provides a uniform, square beam at the output end making it immediately useful in the manufacture of flat panel displays. This novel fiber design, with its well defined core geometry, extends the capabilities and precision of light manipulation in manufacturing and other fields. (Paper OThH3, “Square Core Jacketed Air-Clad Fiber”)

6. Producing Light in an Economically Important Region

Bismuth-doped fiber lasers can produce light nicely in the economically important wavelength region around 1.3 microns. This spectral region is sometimes referred to as a “second window” (the first being around 0.85 microns and a third at 1.55 microns) for data transmission since optical loss for light at 1.3 microns is only about 0.35 decibel per km and chromatic dispersion in silica-based glass is nearly zero. Research with fiber lasers in this region, however, has encountered some physical and technical obstacles. Consequently, there have been no effective silica-based fiber lasers and amplifiers at 1.3 microns.

This changes now, with the work of E.M. Dianov of the Fiber Optics Research Center at the A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences and his colleagues. At the meeting, they will report the first bismuth-doped silica fiber laser, with up to 0.5 watts of power in the spectral range 1146-1300 microns. (Paper OTuH4, “Bi-Doped Silica Fibers: A New Active Medium for Tunable Fiber Lasers and Broadband Fiber Amplifiers”)

7. Mass-Producing Photonic Integrated Circuits

Photonic chips, the opto-electronic equivalent of electronic microchips, often come in pairs, one for transmitting photonic signals and one for receiving. At the meeting, Fred Kish of Infinera Corporation, will report that his company can manufacture integrated photonic chips in great volume. The overall data rate for these devices is 100 Gb/sec. The sending chip contains 10 lasers, 10 modulators (each capable of working at 10Gb/sec rates for a total rate of 100 Gb/s), a demultiplexer, and other devices, while the receiving chip contains complementary devices, such as photoreceivers, multiplexers, etc. This is in comparison with typical present industry performance data rates for long-haul telecom systems of 10 Gb/sec per chip; a few can go as high as 40 Gb/sec. (Paper OWL1, Kish et al., “Volume Manufacturing and Deployment of Large-Scale Photonic Integrated Circuits”)

8. 10G Networks Help Broadband Services Grow Faster Than Moore's Law

Bob Harris of Time Warner Cable will discuss the architecture of large-scale fiber-optics-based 10G networks able to deliver such services as voice, video, and Internet service to regional, community, and government customers. High-bandwidth networks operating with multiple optical channels, where each channel is 10G-enabled, Harris says, offers compelling economics in the delivery of services across local, metropolitan, and regional networks. Providers are now able to offer new services and support the rising traffic demands that are increasing at a rate greater than Moore's law (i.e., more than doubling every 18 months). In addition to helping proliferate services such as VoIP (Internet telephone), 10G networks facilitate the economic delivery of telecom services to government organizations such as broadband access to K-12 grade students. Harris will point out the technological aspects of these networks that make them so powerful and flexible. For example, they transmit up to 40 wavelengths of light simultaneously through fiber lines, unlike previous generations, which would only transmit several wavelengths or less. In addition, crucial elements of a 10G system, such as routing and switching, are located at the edges of the network, rather than at its center, analogous to how the workers of many cities reside in the suburbs, rather than in the midst of a metropolis. Multi-wavelength 10G networks build upon previous generations of network systems and fiber-optics technology. The open-ended architecture of 10G, Harris says, provides the ability to keep up with bandwidth demands and deliver new broadband services as they become available, helping people become better connected than ever before. (Paper OTuJ1, “10G-Enabled Optical Network Architecture Directions for Video, Voice and Data: An MSO Perspective”)

For more information, visit

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers


10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow