Preparing for a Quantum Leap in Computing

By Tom Siegfried

March 3, 2006

Imagine a place where anything possible always happens, like a TV screen that displays all the channels at once.

If that seems beyond imagination, you are not alone. The world of quantum physics is so weird that even the scientists who study it say it challenges everyday concepts of common sense. The field has grown from a realization that at the smallest scale — the realm where atoms and molecules roam — the classical equations that Isaac Newton used to describe the physical world no longer apply. In this realm, matter behaves differently, and many realities can co-exist. Particles like electrons, for instance, occupy several locations at the same time, behaving more like fuzzy waves than solid pebbles.

Fortunately, such weirdness mostly confines itself to the inner life of atoms. But a new quantum world is coming, where scientists hope to preserve the quirky diversity of the subatomic realm. This would allow them to devise superfast computers, design new drugs and guarantee security for sending secret messages.

Harnessing the power of the quantum realm requires coordinated planning from experts in fields ranging from physics and chemistry to electrical engineering. And that puts USC College's Daniel Lidar in a perfect position to help prepare for the quantum future. A physicist with joint appointments in the departments of chemistry and electrical engineering, Lidar is a leader in current efforts to transform quantum physics from theoretical curiosity to cutting-edge information technology.

As the son of two scientists (a biochemist and pharmacologist), Lidar was constantly exposed to scientific thinking while growing up in Israel and Holland. He earned his Ph.D. in physics from Hebrew University in Jerusalem in 1997, and soon thereafter began exploring the emerging field of quantum information theory.

After a postdoctoral position at Berkeley and several years on the faculty at the University of Toronto, he migrated to USC last fall. He was drawn by Southern California's growing status as the world's leading region for the new quantum research enterprise.

“This is a real hub,” he said, noting that USC, Caltech and UC Santa Barbara all boast strong programs. “Southern California is probably the world capital of activity in my field.”

In the mid-1990s, Bell Labs mathematician Peter Shor initiated the quantum information revolution by proving that a computer using quantum programming could crack the toughest of today's secret codes, used for governmental, military and financial communication. About the same time, other research showed that only another quantum system could provide absolute protection against any illicit eavesdropping.

Work by Lidar and his collaborators has focused on how to protect the delicate process of quantum computing from attack — by nature itself or malicious hackers.

So far, quantum computations have been performed only in rudimentary laboratory experiments. If feasible on a larger scale, quantum computers could solve some difficult problems at a fraction of the speed of today's fastest supercomputers. The trick relies on those multiple quantum realities. Like the TV screen showing every channel at once, a quantum computer could process all the numbers in its memory simultaneously, rather than one computation at a time. It's a bit like finding which of a thousand keys opens a lock; instead of trying one at a time, you could just spin one key in the lock until it opened. Certain problems that would tax a supercomputer for a trillion years could yield to a quantum computer in minutes.

But such speed is available only as long as the multiple quantum calculations can be protected from outside interference. And the same process nature uses to make rocks and people solid, instead of fuzzy like electrons, conspires to keep that time very, very short. That process, known as quantum decoherence, is usually an immediate and inevitable result of interaction with the environment — collisions with atoms or mere particles of light can cause a frail ensemble of multiple quantum realities to crash.

Lidar and colleagues have shown, though, that some quantum computing set-ups are at least partially immune to the ravages of decoherence. By designing an apparatus with “decoherence free subspaces,” quantum information can be preserved in the face of environmental insults. The solution is to make sure that external effects exert a symmetric effect on the quantum storage sites. (If one bit of information is altered, so is its partner, so the two together retain a record of the stored information.)

A more difficult challenge may arise on a future “quantum internet” where quantum computers share data. Nobody had considered the potential for quantum viruses afflicting such a network until last year, when Lidar and post-doc Lian-Ao Wu proposed a scheme for fighting such “quantum malware” in a paper to be published in the journal Quantum Information Processing.

“Essentially the proposal is to do the analog of backup,” said Lidar, an associate professor hired as part of the College's Senior Faculty Initiative. Only legitimate users of a system would be told when “real” data is being transmitted. During the remaining down time, the quantum data could be stored on a secure device, off the network, while bogus transmissions serve as a decoy for intruders. A hacker would never know when the system was vulnerable, and constant intrusion attempts would be easy to detect.

“It's the first look at this problem,” Lidar said, and much further work will be needed to devise foolproof protection and a quantum virus cleanser if infection is successful.

For now, of course, quantum viruses are of no serious concern, as there is no quantum network to attack. But Lidar foresees a growing likelihood that quantum technology will soon play a significant role in sending secure messages and eventually in computing.

“It's a field that is likely to have a widespread impact in the context of secure information transmission,” he said. “It is the most secure method of information transmission that we know of.”

As for quantum computing, its advantages are limited to certain types of problems; quantum computers are likely never to be good for word processing. But they could prove valuable in economically important realms such as designing drugs from scratch, by computing the quantum rules governing how biological molecules interact. Any such uses depend, of course, on effective hardware for building quantum computing devices, which might require advances in nanotechnology approaches for fabricating the necessary materials.

Thus while Lidar focuses on theory, he emphasizes the need to develop the experimental side of the field as well.

“My dream for USC would be to develop not only as a leading theoretical place, which I believe it is . . . but also to strongly develop the experimental capabilities here,” he said. “That would really put us on the map.”


Source: University of Southern California

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., announced yesterday (July 6) a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascad Read more…

By Tiffany Trader

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This