Preparing for a Quantum Leap in Computing

By Tom Siegfried

March 3, 2006

Imagine a place where anything possible always happens, like a TV screen that displays all the channels at once.

If that seems beyond imagination, you are not alone. The world of quantum physics is so weird that even the scientists who study it say it challenges everyday concepts of common sense. The field has grown from a realization that at the smallest scale — the realm where atoms and molecules roam — the classical equations that Isaac Newton used to describe the physical world no longer apply. In this realm, matter behaves differently, and many realities can co-exist. Particles like electrons, for instance, occupy several locations at the same time, behaving more like fuzzy waves than solid pebbles.

Fortunately, such weirdness mostly confines itself to the inner life of atoms. But a new quantum world is coming, where scientists hope to preserve the quirky diversity of the subatomic realm. This would allow them to devise superfast computers, design new drugs and guarantee security for sending secret messages.

Harnessing the power of the quantum realm requires coordinated planning from experts in fields ranging from physics and chemistry to electrical engineering. And that puts USC College's Daniel Lidar in a perfect position to help prepare for the quantum future. A physicist with joint appointments in the departments of chemistry and electrical engineering, Lidar is a leader in current efforts to transform quantum physics from theoretical curiosity to cutting-edge information technology.

As the son of two scientists (a biochemist and pharmacologist), Lidar was constantly exposed to scientific thinking while growing up in Israel and Holland. He earned his Ph.D. in physics from Hebrew University in Jerusalem in 1997, and soon thereafter began exploring the emerging field of quantum information theory.

After a postdoctoral position at Berkeley and several years on the faculty at the University of Toronto, he migrated to USC last fall. He was drawn by Southern California's growing status as the world's leading region for the new quantum research enterprise.

“This is a real hub,” he said, noting that USC, Caltech and UC Santa Barbara all boast strong programs. “Southern California is probably the world capital of activity in my field.”

In the mid-1990s, Bell Labs mathematician Peter Shor initiated the quantum information revolution by proving that a computer using quantum programming could crack the toughest of today's secret codes, used for governmental, military and financial communication. About the same time, other research showed that only another quantum system could provide absolute protection against any illicit eavesdropping.

Work by Lidar and his collaborators has focused on how to protect the delicate process of quantum computing from attack — by nature itself or malicious hackers.

So far, quantum computations have been performed only in rudimentary laboratory experiments. If feasible on a larger scale, quantum computers could solve some difficult problems at a fraction of the speed of today's fastest supercomputers. The trick relies on those multiple quantum realities. Like the TV screen showing every channel at once, a quantum computer could process all the numbers in its memory simultaneously, rather than one computation at a time. It's a bit like finding which of a thousand keys opens a lock; instead of trying one at a time, you could just spin one key in the lock until it opened. Certain problems that would tax a supercomputer for a trillion years could yield to a quantum computer in minutes.

But such speed is available only as long as the multiple quantum calculations can be protected from outside interference. And the same process nature uses to make rocks and people solid, instead of fuzzy like electrons, conspires to keep that time very, very short. That process, known as quantum decoherence, is usually an immediate and inevitable result of interaction with the environment — collisions with atoms or mere particles of light can cause a frail ensemble of multiple quantum realities to crash.

Lidar and colleagues have shown, though, that some quantum computing set-ups are at least partially immune to the ravages of decoherence. By designing an apparatus with “decoherence free subspaces,” quantum information can be preserved in the face of environmental insults. The solution is to make sure that external effects exert a symmetric effect on the quantum storage sites. (If one bit of information is altered, so is its partner, so the two together retain a record of the stored information.)

A more difficult challenge may arise on a future “quantum internet” where quantum computers share data. Nobody had considered the potential for quantum viruses afflicting such a network until last year, when Lidar and post-doc Lian-Ao Wu proposed a scheme for fighting such “quantum malware” in a paper to be published in the journal Quantum Information Processing.

“Essentially the proposal is to do the analog of backup,” said Lidar, an associate professor hired as part of the College's Senior Faculty Initiative. Only legitimate users of a system would be told when “real” data is being transmitted. During the remaining down time, the quantum data could be stored on a secure device, off the network, while bogus transmissions serve as a decoy for intruders. A hacker would never know when the system was vulnerable, and constant intrusion attempts would be easy to detect.

“It's the first look at this problem,” Lidar said, and much further work will be needed to devise foolproof protection and a quantum virus cleanser if infection is successful.

For now, of course, quantum viruses are of no serious concern, as there is no quantum network to attack. But Lidar foresees a growing likelihood that quantum technology will soon play a significant role in sending secure messages and eventually in computing.

“It's a field that is likely to have a widespread impact in the context of secure information transmission,” he said. “It is the most secure method of information transmission that we know of.”

As for quantum computing, its advantages are limited to certain types of problems; quantum computers are likely never to be good for word processing. But they could prove valuable in economically important realms such as designing drugs from scratch, by computing the quantum rules governing how biological molecules interact. Any such uses depend, of course, on effective hardware for building quantum computing devices, which might require advances in nanotechnology approaches for fabricating the necessary materials.

Thus while Lidar focuses on theory, he emphasizes the need to develop the experimental side of the field as well.

“My dream for USC would be to develop not only as a leading theoretical place, which I believe it is . . . but also to strongly develop the experimental capabilities here,” he said. “That would really put us on the map.”

—–

Source: University of Southern California

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This