Sun’s Hero Program: Changing the Productivity Game

By By Mike Vildibill

April 7, 2006

Sun Microsystems sees a future where developers will be able to write tera- or peta-scale applications just as easily as they write applications for just dozens or perhaps hundreds of processors today. Where rich bandwidth, low latencies, very high levels of fault tolerance, and a highly integrated toolset allow researchers to focus on “scaling the program and not the programmers.”

Not long ago, a computational scientist could personally write, debug and optimize code to run on a leadership class high performance computing system without the help of others. Today, things are much harder: the programming for a cluster of machines is significantly more difficult than traditional programming, and the scale of the machines and problems has increased more than 1,000 times. Also, simply owning and running high-end computational facilities for nuclear research, seismic modeling, gene sequencing or business intelligence, takes sizeable investment in terms of staffing, procurement and operations. The complexities associated with HPC continue to increase, and as a result, many advances and scientific discoveries are hampered. For organizations that can afford to staff a sizeable team, it is often the case that the resulting application achieves only 5 to 10 percent of the theoretical peak performance of the system. Often, applications must be restarted from scratch every time a hardware or software failure interrupts the job. The trend toward diminishing productivity associated with coding, debugging, optimizing, modifying, over-provisioning hardware, and even just simply running high-end applications is alarming.

To fill this high-end technology and capability gap, protect critical national security missions, and ensure a new generation of economically viable systems, the United States' Defense Advanced Research Projects Agency (DARPA) has set some very demanding goals for the High Productivity Computing Systems (HPCS) program. By the end of this decade, they've asked for huge leaps such as improving real versus peak application performance by a factor of 10x to 40x, and reducing cost and time for developing solutions by 10x.

Into the Future

Sun's vision of HPC aligns well to meet the needs of the U.S. government and the greater industrial community. Our vision includes systems scaled from thousands to tens of thousands of processors working in an efficient, simple and highly resilient manner. These systems would be able to churn out results that will help lead to new discoveries and provide competitive advantages with relatively little manpower or exceptional programming expertise required, using open source software tools developed by the community.

Impossible? We don't think so. As a Phase II participant in DARPA's HPCS program, Sun has put together an amazing team of engineers and innovators. Led by Sun Fellow and vice-president Jim Mitchell, our “Hero” program (which got its name when Sun Fellow Ivan Sutherland commented that we are undertaking “an effort to build a system of heroic proportions”) has been heads-down designing this revolutionary leap forward in productivity.

Over the last four years we have developed fully integrated system designs based on innovative new hardware and software technologies that we are confident can indeed make this leap. With an emphasis on delivering high levels of productivity to the developer, the system administrator and the facility operator, our research has led us to appreciate the value that massive bandwidth brings to the table – value that translates to increased productivity. Enabling features include globally addressable memory, system level and application checkpointing in combination with hardware and software telemetry for dramatically improved fault tolerance. Advanced features such as these make the system appear more like a flat memory system and allow the developer to focus on solving the problem at hand rather than making elaborate efforts to distribute data in a robust manner.

Proximity Communications

To achieve our goals, our Very Large Scale Integration (VLSI) Research Group at Sun Labs has been working on innovative technologies to radically improve the bandwidth and latencies associated with chip-to-chip communications. One technology we are looking at is capacitive coupling, which enables high-speed data communication between neighboring chips without the need for wires of any kind. This technology, which we call Proximity Communication, allows for the alignment of metal plates on one chip with metal plates on a neighboring chip and the transfer of data between them with reduced power and with bandwidths and latencies approaching those in native on-silicon communications. The result is comparable to wafer scale integration, but is accomplished by aligning together many small, tested chips. Connecting these chips using Proximity Communication not only reduces system latency but also improves cross-section bandwidth and communication power. A critical area of Sun's work in this area has been the design of system architectures that can best capitalize on this technology.
 
The ability to connect chips in this fashion is only one part of the bandwidth solution, however. In order to break out of the physical limitations of the X/Y dimension into another plane, we have added breakthrough optical communications technology to the mix.

Silicon Photonics

In order to extend the performance derived from Proximity Communication to neighboring modules and racks, Sun has been working with start-up Luxtera, Inc., a fabless semiconductor company and leader in silicon photonics. Through this partnership with Luxtera, Sun's photonics research team has taken a first step toward a major breakthrough in future optical interconnect for computer architectures. Their design offers massive scalability with ultra-low latency, while still retaining the reliability and cost structure of standard CMOS fabrication.

Within the CMOS circuitry, light enters and is converted from photons into electrons. The data can then be routed to processor, memory controller, I/O unit, graphics engine or other computer subsystems. Data can then be converted back into photons and transported to neighboring nodes, racks, systems, or remote location. This integration of modulators, filters and lasers enables an optical connection to a distant chip via a fiber that can simultaneously carry many wavelengths of light. Future versions could potentially allow data transfer on a single fiber-optic strand to reach 100 gigabits per second, and eventually making it possible to transfer data at a rate of more than 10 terabits per second. In November 2005 at the Supercomputing conference, Sun and Luxtera publicly demonstrated a CMOS nanophotonic link using four-wave dense wavelength-division multiplexing (DWDM) for a bidirectional 40-Gbit/second link. This represents just the beginning of what could result in low-cost, mass-producible, high-bandwidth system interconnects.

Object-Based Storage

Another piece of the puzzle to achieve massive scalability and extreme performance is in the design of emerging object-based storage. Sun's file system research team has made excellent progress working on this technology. By managing data on disk as related data objects rather than unrelated blocks, we are building “smart” storage systems that can self-manage the data they hold.

Object storage file systems delegate space management to the object storage devices (OSDs), which means OSDs have knowledge of the data objects. OSDs can now effectively manage mixed access types by associating accesses with objects, enabling better caching and even pre-fetching. Objects are different than traditional blocks in that they contain both application data and attributes about that data. This enabling technology is the key to supporting a broad range of quality-of-service (QoS) policies such as information lifecycle management and performance guarantees.

The object-based storage T10/1355-D standard (OSD revision 1) was ratified by ANSI in September 2004. Sun is collaborating with Seagate on this standard and is currently demonstrating Shared QFS communicating with a prototype Seagate OSD drive. We plan to include an OSD driver stack in OpenSolaris later this year and are also contributing to the IETF draft standard for object storage pNFS, which enables clients to access data directly from the OSDs, improving scaling over NFS by separating the metadata and data paths. Sun plans to demonstrate interoperability with other vendors' implementations of pNFS later this year.

Fortress Programming Language

Another very exciting area of research is in the development of a new programming language for HPC. We call it Fortress, and our hope is that Fortress will do for Fortran what Java has done for C.

Programming language notation is currently different from the working notations of mathematicians and scientists. Why can't we bring them closer together? Sun is making great progress toward using the dynamic compilation ideas from the Java HotSpot compiler to provide a productivity boost. Essentially, programmers shouldn't have to worry too much about optimizing while they're writing programs. Instead, that optimization can be done by compilers, either ahead of time or on the fly.

Fortress will allow programmers to write more robust code, and will contain more built-in safeguards against error. For example, the root cause of NASA's Mars Climate Orbiter vehicle failure in 1999 was a very simple bug in the algorithm. The programmers simply forgot to translate metric measures into inches, causing the unit to make fatal computation errors. Programmers using Fortress, on the other hand, can depend on built-in intelligence like unit specification: variable X represents feet, Y represents meters, thus X cannot be compared to Y without performing a conversion first.

Sun has published several work-in-progress drafts of the Fortress specification for public comment on its research web site at http://research.sun.com/projects/plrg .

Innovation Leads to New Opportunities

With excellent progress on hypervisor technology, and through leveraging key features in the Solaris 10 Operating System (OS), such as zones and containers, we see the opportunity for massive scaling of the Solaris OS and the system software without massive rewriting.

Other areas of advancement include:

  • developing a system architecture that allows a customer to “right size” the amount of performance and fault tolerance they need to maximize productivity for a given budget;
  • possible SPARC processor enhancements to meet intensive floating point performance goals;
  • automatic parallelization of Fortran giving comparable performance using only 1/10 the source code;
  • developer's toolsets that we hope will encourage industry support for an open source HPC toolset;
  • an enhanced administrative environment that uses abstractions and automation to enable scalable operations for thousands of resources;
  • a visualization architecture to deliver highly scaled performance for huge dataset sizes;
  • development of applications using interval arithmetic to ensure accurate results, and in some cases interval solutions to nonlinear problems that are otherwise numerically impossible to solve; and
  • productivity and performance analysis, simulations, benchmarking and modeling.

The Future — Ultrascale Computing

Sun appreciates the unique opportunity granted by DARPA to do clean sheet design, to explore and research some technologies that just wouldn't have been possible without its HPCS program. It has been a very exciting and challenging few years. We've been very aggressive in the goals we've set – not satisfied to take evolutionary steps into the future, but have set out to develop dramatic game-changing innovation. Sun is happy and proud of the results to date. We believe our Hero technology can change the HPC productivity game; can in fact make it possible for scientists and researchers to solve their most complex and difficult problems.

—–

Mike Vildibill is director in Sun's Scalable Systems Group responsible for next generation server performance and leads product planning for Sun's HPCS program. Mike came to Sun after over a decade at the San Diego Supercomputer Center where he was director of high-end computing. Mike made the HPCwire “Top People to Watch” list in 2002 and continues his passion for performance at Sun.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This