Modeling Enzymes at NCSA

By Nicole Hemsoth

April 14, 2006

The world’s smallest Rube Goldberg devices are manufactured by Mother Nature. Known as enzymes, these fiendishly complex proteins perform life’s most basic tasks—transforming air and food into tissues and metabolic energy. Like Rube’s ridiculous contraptions, they have parts that grip and bend, swing and rotate. But in place of ball bearings, dominoes, and springs, enzymes use amino acids to accomplish their feats.

How enzymes operate, however, has proven daunting to decipher. For one thing, they’re too tiny to be observed by the most powerful microscopes. For another, they’re constantly in motion, flexing and drifting in the soupy innards of a cell.

Scientists have long relied on static snapshots (x-ray crystallography) and protein sequences to gain insights into enzyme structure and function. But using this information is like reconstructing a car engine from a parts list and a glance below the hood; it’s impossible to understand how it works until you see it running.

Now scientists are doing the next best thing: animating enzymes with models run on supercomputers. Using molecular dynamics modeling, scientists can track the behavior of each of the tens of thousands of atoms that make up enzymes, solvents, and substrates—and watch nature’s microdevices in action.

A tough nut to crack

Among those taking this tack are Zaida Luthey-Schulten, professor of chemistry at the University of Illinois at Urbana-Champaign, and Rommie Amaro. Amaro recently completed her PhD with Luthey-Schulten and is starting a post-doc at the University of California at San Diego. They are using NCSA supercomputers to model the workings of an enzyme that helps manufacture the amino acid histidine. Together with the experimental group of V. Jo Davisson, professor of medicinal chemistry at Purdue University and his student, Rebecca Myers, Amaro and Luthey-Schulten have recently nailed down a key step in the production of amino acids and the building blocks of DNA. Their work made the cover of the July 2005 issue of Biophysical Journal.

“One of the really fabulous things about molecular dynamics simulations is they allow you to see things on an atomistic level. There is no other way to see these types of behaviors right now. And when it’s consistent with the experimental results, you can have really profound insights into these systems,” Amaro says.

The enzyme in their sights has a name as complex as its function: imidazole glycerol phosphate (IGP) synthase. The enzyme “is really the epitome of complexity in enzyme catalysis,” Amaro says. Its job is to make both IGP and AICAR, an ingredient necessary to make DNA and RNA.

Previous research had shown that IGP synthase consists of two parts, hisH and hisF. Each subunit performs half of the enzyme’s duties: hisH transforms the abundant amino acid glutamine into ammonia and glutamate, while hisF uses the ammonia to produce IGP and AICAR.

Though the two subunits might appear to act independently, they always remain docked together when the enzyme is active. The reason behind their close association appears to be ammonia. If released from the enzyme and into the cell, ammonia would instantly react with water and other solvent molecules. Its escape would leave hisF bereft of a substrate. Instead, the scientists realized, ammonia must follow a protected path within the enzyme to travel from hisH to hisF.

Ammonia’s mysterious path

Initial studies suggested the handoff occurred at something resembling a molecular gate. Four strategically placed amino acids appeared to block the entrance from hisH and into the tubelike interior of hisF. Two of the amino acids were positively charged, and two were negatively charged; their strong electrostatic interactions appeared to seal off the mouth of the hisF barrel completely. “Everybody thought that in order for ammonia to make it from one active site to the other, these would have to move aside,” Amaro says.

Previous sequencing studies had indicated that all four of these gate residues were conserved; that is, the same amino acids occupied these positions in both the bacterial and yeast versions of the enzyme. (In biology, conserved structures tend to be critical for an organism to function. They remain unchanged because without them, creatures don’t survive to pass along the defect.)

To determine the role of each gate residue, the scientists replaced them one by one with a generic amino acid and observed what went awry. Checking the experimental and computational results against one another, they reasoned, would narrow down what was actually going on.

One of their substitutions poked a big hole in the gate by substituting a smaller, uncharged amino acid for a bulky, charged one. This nearly derailed the reaction in the laboratory. Normally, the enzyme uses one molecule of glutamine to make one molecule of IGP, an efficient 1:1 substrate/product ratio. The mutation changed the ratio to an abysmal 122:1. “On the computational side, we introduced that same mutation but could really watch the system on an atomistic level. We saw that the water molecules from the solvent rushed into the hole and filled the protected ammonia chamber; it basically flushed the ammonia out,” Amaro says.

A molecular trapdoor

Even more interesting, however, was how the normal, or wild-type, enzyme behaved in the simulation. When the ammonia moved near one of the four gate residues, a lysine, “the lysine actually bent, and ammonia slipped through this newly discovered side opening,” Amaro says.

Once the ammonia had passed inside, the simulation revealed, the lysine swung shut behind it. Once inside, ammonia was forced to remain in the barrel, and water could not chase it out.

Swapping the lysine for a smaller molecule essentially propped this side door ajar. In the laboratory, the reaction’s efficiency slipped from 1:1 to 3:1. The computer simulation showed that while the mutation allowed ammonia to slip into the barrel more easily, it could also diffuse right back out.

“We actually saw the side opening at the beginning and didn’t quite believe it,” Luthey-Schulten says. In earlier simulations, they had pulled a virtual molecule of ammonia through the enzyme using a technique known as steered molecular dynamics (SMD). SMD allows the scientists to recreate events that would take too long—and use up too much computer time—to simulate otherwise. In this case, the researchers used SMD to measure the strength of the chemical bonds ammonia makes with enzyme amino acids at each step of its journey. “By knocking on that gate long enough, we saw a heck of a high barrier, and knew ammonia was not going through that very easily,” Luthey-Schulten says. “A subtle change, and it just went through the side door. We though nah, we must’ve done something wrong.”

In fact, they had discovered the hidden entrance to the kingdom.

SMD also gave the scientists insight into the role of water in the reaction. Water competes with ammonia to bond with amino acids in the barrel’s lining, they found. So having a couple of water molecules in the hisF barrel prevents ammonia from getting stuck. In other words, water helps lubricate the chamber.

A dedicated computing team

The researchers used the NCSA Tungsten cluster to run their 50,000-atom simulations. “NCSA has always been a valuable resource for us; it’s my location of choice. Their system is stable, the programs run very well on it, and the people are just fabulous,” Amaro says. She singles out John Towns, senior associate director of NCSA’s persistent infrastructure directorate, for particular praise. “He’s so responsive to our needs as scientists. If we need dedicated time, he can usually help us out. It’s also really nice to have people you can talk to; those human relationships make a big difference.”

In fact, Amaro and Luthey-Schulten liked working at NCSA so much that they transferred all of their time at another supercomputing center to NCSA.

Thanks to the data-crunching power of supercomputers, Luthey-Schulten says, “this whole field is really coming into its own. We can seamlessly go from bioinformatics to molecular dynamics simulations and energy landscape studies, and learn enough to apply it to other systems very easily.”

She, Amaro, and colleagues have already applied their findings to an even more intriguing mystery about IGP synthase — how molecules bound at opposite ends of the enzyme somehow work together to turn the device on. Their discoveries promise to help biochemists everywhere decipher how organisms build such elaborate enzymatic mousetraps.

This research is supported by the National Science Foundation and the National Institutes of Health.


—–

Source: NCSA’s Access Magazine. Provided courtesy of the National Center for Supercomputing Applications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

What’s New in HPC Research: Mosquitoes, [email protected], the Last Journey & More

June 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

Contributors

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This