Puerto Rican University Deploys Grid Testbed

By By Derrick Harris, Editor

April 17, 2006

GRIDtoday spoke with Wilson Rivera, director of The Parallel and Distributed Computing Laboratory at the University of Puerto Rico, Mayaguez, about his lab's Grid testbed, which is being used to research and improve various areas of Grid computing. Rivera will be discussing this project at Gelato ICE, which takes place April 23-26 in San Jose, Calif.

GRIDtoday: Tell me a little about the PDCLab and about your history in Grid/distributed/high-performance computing.

WILSON RIVERA: The PDCLab was established in 2001 as part of the Program for Research in Computing and Information Science and Engineering (PRECISE), a project funded by the National Science Foundation to strengthen computing research at the University of Puerto Rico. Initially, the lab focused on the design and development of parallel algorithms targeting computational fluid dynamics and evolutionary computation. Since 2005, the PDCLab has focused its research activities almost exclusively to Grid computing technologies addressing fundamental research problems in Grid computing including automated grid deployment and adaptive Grid services.

Gt: On what kind of Grid and/or distributed computing projects is the PDCLab currently working?

RIVERA: Currently, we have several Grid computing related projects underway which include:

  • WALSAIP — The Wide Area Large Scale Automated Information Processing project aims at developing an infrastructure for the treatment of signal-based information arriving from physical sensors in a wide-area, large scale environment. It formulates a new conceptual model for treatment of signal information which accentuates a distributed space-time processing format. It permeates all other system substructures such as distributed sensor networks for signal acquisition, distributed databases for database management and distributed computing.
  • STB-CASA — This project, sponsored by the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA), focuses on integrating radar networks and Grid technologies to improve our ability to monitor the earth's lower atmosphere.
  • ASPO — The Adaptive Service Provision and Orchestration project addresses the problem of how multiple services should be orchestrated in a Grid environment to provide adaptive functionalities. The need for adaptation in Grid infrastructures arises due to both resource and service demand uncertainty. Next generation of Grid middleware must provide mechanisms to efficiently deal with uncertainty. Several key issues in this problem space are addressed to evolve, scale and respond to unpredictable service demands and events.

Gt: At the upcoming Gelato conference, you'll be speaking about your Grid testbed. Tell me a little about that project.

RIVERA: The PDCLab Grid testbed is not a production grid. It is indeed an experimental deployment of Grid computing technologies. The PDCLab Grid testbed has been thought to provide an easy-to-use infrastructure with flexibility to plug in new resources and testing of services. To achieve this goal, we have deployed a number of tools to facilitate administrative and end-user utilization via a package of scripts for configuration and installation and grid portals to access resources and services. To complement the spectrum of work in Grid computing technologies, we have developed specific research ideas including adaptive scheduling and data replication mechanisms. The ultimate goal is to apply these ideas in our Grid infrastructure and extrapolate them to other Grid-based infrastructures.

Gt: What kind of results have you seen thus far from the research you're conducting?

RIVERA: We have developed an adaptive scheduling algorithm, referred to as QB-MUF algorithm, to provide quality of service for wide-area, large-scale applications. The scheduling strategy focuses on providing high priority to jobs with low probability of failure based on Quality of Service (QoS) criteria. We are currently working on the deployment of this scheduling strategy as a Grid service on top of Globus toolkit 4.0.1.

We have also developed an information dispersal replication strategy to perform distributed management of data acquired by sensor networks. The proposed information dispersal algorithm shows a better access reliability than the traditional replication algorithms. It is also being deployed as a Grid service.

Gt: Can you discuss the hardware and software aspects of the Grid testbed? What types of middleware, processors, operating systems, etc., comprise this grid?

RIVERA: The PDClab Grid testbed aggregates a number of heterogeneous resources, including a Linux Beowulf Cluster that consists of 65 2-Way SMP Intel Pentium III, eight IA-64 Itanium servers, two IA-32 Pentium IV servers, one IA-32 Pentium III server and two Intel Xeon servers. The storage capacity is around of 4TB. It is being connected to a network of radars and sensors distributed around the island of Puerto Rico. The PDClab Grid testbed components run CentOS 4.2 (Linux) and the Globus Toolkit 4.0.1. Software associate to the pre-installation of Globus includes: OpenPBS, Torque, PosgreSQL, Apache Ant version 1.6.5, Java SDK version 1.5 and Jakarta Tomcat version 5.5.9.

Gt: Although grids are — in theory, at least — hardware and operating system agnostic, your institution is also a member of the Gelato Federation, which promotes Linux on Itanium. Why is it important for you? What makes Linux on Itanium an effective platform for high-performance computing?

RIVERA: We have demonstrated the benefits of the Itanium architecture on high- demand applications such as hyper-spectral imaging analysis. The heterogeneous nature of resources in our Grid testbed is an important issue since it posses a number of administrative and performance considerations. For example, configuration and deployment are quite different for Itanium-based resources versus I-32 based resources. In terms of execution of applications, it is difficult to hold transparency when submitting jobs to the grid. Applications targeting I-64 Itanium-based resources often require extra tuning efforts to achieve performance. As a consequence, an important effort in our research plan has been the development of tools to facilitate transparent access to these heterogeneous architectures.

Gt: How do you see Gelato members in Latin America contributing to science and technology development in the region?

RIVERA: Gelato Federation has been quite successful bringing together the top research institutions in Latin America. Institutions such as UFCG (Brazil), ITEM (Mexico), UC (Chile) and UB (Argentina) have a probed tradition in research contributions. I invite you to visit Gelato's Web site (www.gelato.org) to learn more about the contributions of these institutions in varied areas such as high performance computing, digital libraries and scientific computing.

Gt: How does Grid computing play into this contribution?

RIVERA: Examples of large-scale Grid-related projects in Latin America include CLARA (Latin America Cooperation of Advanced Networks), supported by the European Commission through the ALICE project (Latin America Interconnected with Europe); EELA (E-infrastructure Shared between Europe and Latin America); and, recently, LAGrid (Latin American Grid).

In my opinion, there has been a lack of vision of the Latin American governments, including Puerto Rico, to fully support Grid computing adoption, contrary to government agencies in Europe and Asia. We cannot underestimate the impact that Grid computing technologies will have on science and technology development in the region and, ultimately, on our society.

Gt: Overall, how would you rate the success of your Grid testbed, and any other Grid projects at UPRM, and what does the future hold for Grid research at the university?

RIVERA: We did not want to be “yet another grid project” to provide computing facilities to end-users, so we have concentrated our efforts understanding Grid technologies and working on fundamental problems in Grid computing. I understand we are now in a good position of leadership for Grid initiatives at UPRM. That is my initial measure of success. However, there is too much work to do. I foresee exiting Grid projects at UPRM interconnecting intra- and inter-campus facilities. I expect a strong collaboration with our industrial partners on campus, such as IBM with LAGrid and Hewlett-Packard with the Utility Data Centers. I believe this is a unique opportunity to advance the industry of knowledge in Puerto Rico.

Gt: Is there anything else you'd like to add?

RIVERA: I am very thankful to have had the opportunity to talk about our Grid efforts at the PDCLab. I will keep GRIDtoday posted about our Grid initiatives at UPRM and, of course, I invite my colleagues around the world to contact us for potential collaborations. Our Web site is http://pdc.ece.uprm.edu.

About Wilson Rivera

Dr. Wilson Rivera obtained his Ph.D.in computational engineering from Mississippi State University, while working at the NSF Engineering Research Center for Computational Field Simulation. There, he concentrated on developing domain decomposition algorithms for solving time dependent partial differential equations with applications in Computational Fluid Dynamics. Rivera is an associate professor at the University of Puerto Rico, Mayaguez, (UPRM). He leads the Parallel and Distributed Computing Laboratory (PDCLab) at UPRM. His current funded projects address fundamental research problems in the areas of Grid computing (automated grid deployment, adaptive Grid services, dynamic resource management and grid performance) and workflow management (workflow modeling, metadata description and dynamic scheduling). Rivera is also the executive director for the Institute for Computing and Informatics Studies at UPRM and is a faculty member of the NSF Center for Subsurface Sensing and Imaging Systems (CenSSIS) and the NSF Center for Collaborative Adaptive Sensing of the Atmosphere (CASA).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This