Keeping Your Cool in the Data Center

By Michael Feldman

April 21, 2006

As more computational muscle is incorporated into blade servers, clusters and supercomputers, the resulting increases in power and heat have become a significant challenge for the data center. Power-hungry blade servers, in particular, have become a major source of thermal pollution. Additional IT equipment, such as routers and other communication gear, are also contributing to the power and heat loads. The IT manager is left trying to reconcile the increases in computational demand with the ability of the data center to accommodate it.

Solutions are emerging. Technological advances in processors, such as lower-power chips, multi-core processors and on-chip power management are being developed to slow power demands. But in the short-term, computational demand is overwhelming these solutions. Fortunately, companies specializing in power and cooling equipment have developed strategies that address even the most power-demanding computing centers.

One of these companies, American Power Conversion (APC), has a variety of solutions for powering and cooling the modern data center. APC provides these solutions for thousands of data centers around the world for both commercial and non-commercial organizations. Last month, Richard Sawyer, APC’s Data Center Technology director, presented a tutorial session at the High Performance Computing and Communications (HPPC) conference in Newport, Rhode Island, to educate conference attendees about some of the latest power and cooling strategies that the industry has to offer.

Sawyer gives these types of presentations to help educate IT professionals about how the industry has progressed in the past few years in terms of solving the high-heat-density problem. The evolution from mainframes to blades is occurring rapidly and many IT managers are unaware of the types of strategies that have recently become available to solve the ensuing power and heat dilemma.

Blades reared their ugly head about three years ago,” explained Sawyer. “Manufacturers were all of sudden dealing with [power] densities of 5 to 20KW per rack, which led to a lot of hot spots. The hot spots were what drew everybody’s attention; we developed fixes for that. In the past, they always designed data centers around the power reliability array. Today it’s all about cooling.”

According to APC studies, blade servers require about 20 times the power and cooling of the average data center design. In the past five years, blade server power density has increased rapidly to the point where systems of 24KW per rack are becoming common. A 24KW blade rack generates the heat equivalent to 2 electric ranges. This year, IBM has been talking about driving its Blue Gene/L technology – currently at 31KW per rack — into its BladeCenter products.

“In the last two years, we poured a lot of money into solving the high-heat-density problem in the data center,” said Sawyer. “There’s some interesting technology out there, but it forces a little bit of a rethinking on how to design data centers.”

As a first step in determining a facility’s power and cooling requirements, APC will run a 3D computational fluid dynamics (CFD) analysis using the known data center parameters. Once the model is built, they incorporate the intended IT equipment into the virtual data center. For example, if they’re going to add a couple of blade chassis, they simply plug them into the model and perform a what-if scenario. That lets them know pretty quickly where the capacity is going to be used up and what potential problems could occur.

“Then we reach into our bag of technological tricks and come up with a [solution] that solves that particular problem for them,” said Sawyer.

And just what are those technological tricks? According to Sawyer, the whole industry is moving towards the concept of close-coupling, which means putting the cooling units as close as possible to the source of heat. Instead of arranging a data center with rows of racks in the middle with cooling units around the edge of the room, the cooling units are being moved in close proximity to the IT equipment.

Another strategy is to migrate from air cooling to liquid cooling. Liquid is a much better medium for cooling than air. If you have any doubts about this, compare the different effect of sticking your hand in the refrigerator versus plunging it into some cold water. As heat densities increase in the data center, the ability of air cooling to keep temperatures in the optimal range (68F – 77F degrees) becomes problematic.

Sawyer says that when you go over about 140-150 watts per square foot, which equates to about 3 to 4KW per rack, you start to get into trouble. Beyond this power density, you have more cooling equipment than IT equipment in the data center. So the question becomes how to best cool the equipment, but preserve use of that space. To do this, you have to go to some type of high-density cooling solution.

“There are two things that the users — the IT side of house — have to concede,” said Sawyer. “One is that they are going to have cooling units very close to the racks — in fact, probably in the same row as the racks. The second thing is that there’s going to be some kind of fluid cooling involved — water, glycol or a waterless liquid refrigerant.”

According to Sawyer, that’s not as bad as it sounds, because data centers were originally designed around mainframes, which typically were water-cooled. In fact, raised floors were invented to accommodate the water pipes for mainframe cooling when data centers were first built. Those raised floor are going to be necessary to provide liquid to cooling units that are intermixed with the racks.

But there is resistance to liquid-cooled units by the IT folks. The mantra that Sawyer often hears is: “We don’t want water in our data center.” But, according to Sawyer, they already have to deal with water; the standard air-conditioning units have humidifiers to compensate for the dehumidification that takes places during cooling. And most of the older IT folks are already comfortable with the idea of liquids, since they grew up with water-cooled mainframes.

“It’s a bit of a marketing problem, not just for us, but also for our competitors, to [suggest fluid cooling] in a data center, especially after all these years where we’ve had air cooling,” explained Sawyer. “It’s a little bit of a re-education. So my basic line is: if you’ve got hydrophobia, get over it.”

While power and cooling isn’t the most prominent technology in high-tech facilities, typically representing only 10 to 20 percent of the investment of IT hardware, it is one of the most critical. As Richard Sawyer likes to remind people: “When your server fails, you lose the application; if we fail, you lose all your applications.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This