Itanium’s Growing Pains

By Michael Feldman

April 28, 2006

This week, HPCwire spotlights the two companies that have driven the development of the Itanium microprocessor architecture, Intel and HP. In the second part of our conversation with Intel CTO, Justin Rattner, he talked about Intel's strategy for the microprocessor and his expectations for its future. From the HP perspective, Jerry Huck and Ed Turkel shared their thoughts about Itanium in the context of HP's Integrity systems. In this article, I'm going to offer some broader perspectives on the microprocessor's interesting history.

The Itanium has endured a controversial existence that has polarized not just the industry watchers, but the industry itself. First introduced in 2001, the microprocessor was advertised as the next generation 64-bit microprocessor, destined to replace the RISC architectures of the day. Some also claimed it would replace the CISC x86 microprocessors, as 32-bit platforms were phased out.

Here we are five years after its debut, awash in x86 machines, and Itanium is just beginning to establish itself in the higher end of the cluster and server market. While its proponents like to remind us that it has killed MIPS, Alpha and PA-RISC, the first two were more like assisted suicides and the latter is being forced into retirement by HP itself. So what happened?

At one time, Itanium was being considered by all the tier one OEMs. In 2000, Sun Microsystems decided to stick with their own Sparc-based systems and killed the Solaris-on-Itanium port. Last year, IBM dropped its plans for Itanium, concluding that the architecture would compete directly with its own beloved Power-based platforms. At the same time, it became apparent to Dell that the Itanium was too high-end for its product line. However, other OEMs such as SGI, Bull, Hitachi, Fujitsu and Unisys have stuck with Itanium.

In my conversations with the Rattner, Huck and Turkel, at least one thing became clear. The uninspiring introduction of Itanium with the performance-challenged Merced release in 2001, produced a bad first impression. Already late, the first product was pushed out the door before it was ready.

According to Intel's Justin Rattner, “it missed its original introduction target by several years. The implementation that came to market basically lost a two-year Moore's Law cycle and didn't have the overwhelming performance lead that it would have had it if it had come to market in say, 1998 as opposed to 2000. By the virtue of the fact that it was late, the implementation wasn't this kind of 'home run' from a performance point of view.”

Jerry Huck at HP reflects those sentiments. “There probably was an over-stated expectation. People were expecting it to overtake the world in two years and it didn't, especially in the higher end of the market, which moves more slowly. It's just like the standard curve in technology adoption. We were too much in the hype side of the curve for awhile.”

When the sequel, Itanium 2, arrived in 2002 with the McKinley chip, no one seemed to get too excited. Although the performance was much better — and better yet in later implementations in 2003 and 2004 — it wasn't exactly at the level that matched the original expectations. Itanium's EPIC (Explicitly Parallel Instruction Computing) architecture was advertised as a superior approach to both CISC and RISC. People were expecting something akin to a disruptive technology and they weren't getting it.

Part of this is a matter of perception. The pace of innovation has gotten everyone used to the immediate gratification that comes with rapid technology advancements. But there's a certain amount of conservatism built into technology adoption. This conservatism is even more pronounced in the high performance domain, where organizations with million dollar systems don't replace them every year just to double their performance. Most high-end commercial and government customers are on a three- to five-year cycle. And during economic downturns, like the one that coincided with Itanium's introduction, these procurement cycles get stretched.

Another development that blunted the early acceptance of the Itanium was the introduction AMD's 64-bit x86 processors. Now users who were looking for x86 compatibility with a 64-bit upgrade path could go for Opterons or Athlons. Itaniums had x86 compatibility support as well, but it was slow compared to a native implementation, and couldn't compete on price anyway. At this point, many industry watchers wondered if the microprocessor could find its niche. Three years later, its future is still in doubt.

Robin Bloor, in a recent article for IT-Director asks: “Will Itanium ever really make it? It's still too early to say, but it's very late to be too early to say.”

Maybe. At five years old, Itanium is still an adolescent in the world of microprocessors.

Intel and HP appear to have come to terms with this reality and are practicing patience — as you must with all adolescents. Ed Turkel, HP marketing manager for its HPC division, admits that Itanium is a relatively new technology and they're still learning how to best use it.

In the past year or so, Intel, HP and other Itanium proponents have regrouped. In 2005, the establishment of a well-funded Itanium Solution Alliance has accelerated the effort to get more software ported to the architecture — 7000 applications and counting. Alliance members recently anteed up an additional $10 billion to help grow ecosystem support. In addition, the target market has been more narrowly focused to mission-critical server applications and HPC. Certainly, Itanium's superior floating point performance and it ability to address terabytes of memory point it towards high-end applications. Just recently the decision was made to jettison the processor's x86 compatibility circuitry, making room for more important features.

Despite the doubts about Itanium that you read about in the media, Intel and HP seem to be confident that the basic technology of the architecture will enable it to prevail in the marketplace. Says Jerry Huck at HP: “At the fundamental level, Itanium is really driving towards higher levels of instruction level parallelism. It's trying to achieve more work per cycle than what you accomplish in a RISC architecture. It does it with less hardware — less built-in circuits for the purpose of trying to create parallelism.”

In an article written last November by Johan De Gelas for AnandTech, he says: “From a purely technical and academic point of view — completely ignoring the economical and business logic — there are some strong indications that time may well be on the side of the EPIC CPU despite all doom scenarios.”

The thrust of Gelas' argument is that Itanium's advantages in instruction level parallelism (ILP) and relatively small cores will give it a clear performance lead over its RISC and CISC rivals as semiconductor technology advances. As process technologies get smaller, proportionately more cores can added to the chip, giving it an advantage in Thread Level Parallelism (TLP). The smaller process will also make room for more on-chip cache which favors the cache-hungry Itanium more than its competitors.

So is this the year Itanium will enter adulthood? The soon-to-be-released dual-core Montecito might be the breakthrough chip for the architecture. By going to two cores, Intel has managed to double the performance within the same thermal envelope. And after 2006, the road map shows increases in both core count and clock speed. Confidence by Intel, HP and other Itanium server OEMs abounds.

Declares Rattner: “We firmly believe that it is destined to become the high-volume post-RISC microprocessor out there.”

Stay tuned.

— Michael Feldman

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This