Researchers Provide Road Map for Nanoimprint Lithography

By By John Toon

April 28, 2006

Using a combination of experimental data and simulations, researchers have identified key parameters that predict the outcome of nanoimprint lithography, a fabrication technique that offers an alternative to traditional lithography in patterning integrated circuits and other small-scale structures into polymers.
 
Results of the three-year study, conducted by researchers at the Georgia Institute of Technology and Sandia National Laboratories, provide a “road map” to guide development of next-generation micron- and nanometer-scale high-resolution imprint manufacturing. By reducing cost and time, the design rules could help make high-volume production of nanotechnology-based products more economically feasible.

“This work provides a rational link between what engineers want to make using nanoimprint lithography and the path for creating them,” said William King, an assistant professor in Georgia Tech's School of Mechanical Engineering. “We have developed manufacturing design rules that will give future users of this technology a predictive tool kit so they'll know what to expect over a broad range of parameters.”

The research results have been published in the Journal of Vacuum Science Technology B and the Journal of Micromechanics and Microengineering. The research was supported by awards for King through the National Science Foundation's CAREER program and the PECASE award program of the U.S. Department of Energy.

Nanoimprint lithography is the ultra-miniaturized version of the decades-old embossing process in which a master tool — or a mold — is pressed into a soft material to create detailed patterns. Using a broad range of polymer materials, nanoimprint lithography produces structures on the micron or nanometer size scales, offering the potential for lowering production costs.

However, quality issues caused by unpredictable polymer flow into the non-uniform features of embossing tools pose a major stumbling block. Earlier research into this complex process has produced often conflicting recommendations, forcing manufacturers to pursue costly trial and error.

Using the results of experimental work and a simulation program adapted in collaboration with researchers at Sandia National Laboratories, King's research team examined every variable involved in the nanoimprinting process, recording the outcome of each incremental change through the design space. They studied such variables as shear deformation of the polymer, elastic stress release, capillary flow and viscous flow during the filling of imprinting tool cavities that had varying sizes and shapes.

The simulation work was performed using GOMA, a finite element package developed by Sandia over the last decade. The software was specifically designed for performing simulations of manufacturing flows, where there are freely-moving surfaces and interfaces, and where there are complex materials properties. According to King, it's probably the only simulation package in the world that could tackle this problem.

“This helped us to resolve the phenomenological events that occur during the manufacturing process and to link them to the observed experimental outcomes,” King explained. “Because we have blanketed the entire design space, we have a firm understanding on the linkage between process parameters and outcomes.”

At the micron- and nanometer-size scales studied by the researchers, the fundamental laws of physics remain the same as at larger scales, but manifest themselves in different ways.

“At the small scale with embossing and nano-imprinting, different issues are important,” King said. “For instance, we can have gradients in surface tension that are very important to how polymer nanostructures are formed. We can also have high pressure gradients inside our embossing tools that are almost ridiculously high compared to what you would expect at the macro scale.”

The research examined, for example, how large differences in cavity sizes on the imprinting tool lead to non-uniform filling and non-local polymer flow. It also provided recommendations on how to minimize such issues.

The research ultimately pointed to specific parameters that determine the outcome of the process. These include key geometric parameters that predict the polymer deformation mechanism. The research also developed a new non-dimensional measure, the “Nanoimprint Capillary Number,” which predicts the flow driving mechanism that ultimately governs all of the polymer flow details.

By reducing the complex set of variables to key parameters, King – along with Georgia Tech graduate student Harry D. Rowland and collaborators Amy C. Sun and P. Randall Schunk of Sandia National Laboratories – have been able to account for the varying process outcomes reported by other researchers in dozens of papers, King said.

The results apply to any polymeric material that follows standard viscous flow rules and produces feature sizes larger than 50 nanometers. The next step in the research would be to modify the simulation software to account for physics changes that occur on smaller size scales.

The results could have applications in semiconductor manufacturing, where nanoimprinting offers a potential alternative to increasingly expensive lithography processes to produce circuitry. It could also help make high-volume production of nanoscale structures for optoelectronic, biomedical and other applications more economically feasible.

“Nanoscale products are too expensive to manufacture, and they will continue to be too expensive until something fundamentally changes in the process,” King added. “Nanotechnology will not be successful until you can go into a grocery store or discount store and routinely purchase products based on nanotechnology. That's what we want to accomplish.”

—–

Source: Georgia Institute of Technology Research News

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire