High Performance (Potato) Chips

By Michael Feldman

May 5, 2006

“I’m going to be talking about things that are very familiar to people,” said Tom Lange, Director of Modeling and Simulation at Procter & Gamble (P&G).

Not the kind of introduction you normally think of when someone speaks about high performance computing applications. But this is exactly what Tom Lange talked about at the High Performance Computing and Communications (HPCC) Conference in Newport, Rhode Island, a few weeks ago. His presentation was titled “The Aerodynamics of Pringles.”

Tom Lange has spent over 27 years at Procter & Gamble, modeling products, processes and production systems — everything from how the aerodynamics of potato chips optimizes production to how baby size affects diaper leakage. Although P&G has really only used high performance computing for the last 10 years or so, its origins go back to the late 70s.

“When I joined Procter & Gamble in 1978, we had high-end IBM 360/370 kinds of computers that we used to solve statistics problems,” said Lange. “Our first finite element analysis kind of problem — something that would look more familiar to a supercomputing person today — we solved using a Boeing computer in the middle of the 1980s. So our exploration of the use of simulations to improve our ability to innovate for the consumer is a legacy that is not just a few years old, but in fact more like 15 years old.”

Today, P&G has a fairly typical setup for commercial users of high performance computing. Lange said they have a heterogeneous computing environment — a shared memory SGI Altix system and a multi-hundred-node cluster. Choosing which system to use depends on their suitability for the specific type of modeling/simulation application.

As far as software goes, P&G gets its codes from a variety of sources. They use software packages from ISVs like Abacus, Fluent and LS-Dyna. Most of P&G’s proprietary code is implemented with user-defined functions within these packages. Lange calls this his “commercial-plus” strategy. At P&G, they have not attempted to maintain internal codes.

P&G also uses some national laboratory codes from both LANL and Sandia National Labs. “The same weapons code used at Los Alamos for more sophisticated purposes is used for combustion code in automotive applications and at P&G for paper products manufacturing,” said Lange.

Procter & Gamble tells its story

Unlike its competitors, P&G’s been publicizing how it uses high performance computing technology for a few years now. Other companies have been much more reticent to share their HPC story with the masses. Even Lange admits this story would not have told at P&G in the 1980s. But the nature of product manufacturing has changed.

“We’re in a global competition for ideas,” said Lange. “There’s no illusion at Procter and Gamble that it’s the only place where smart things happen. Since that illusion is not there, our willingness to say what we do know gives us the hope we’ll learn from others. If we’re just sitting in the back hiding, not saying anything, that doesn’t improve our innovation.”

Procter & Gamble does appear to have a more strategic focus on using HPC technology than its competitors. Lange’s position — the director of modeling and simulation — may be hard to find at other companies that produce package goods. Although modeling may have been used to help with product and package design at P&G ten or fifteen years ago, it wasn’t seen as a critical asset. But today, Lange believes there is an increasing awareness to use this technology to develop and improve products. This mirrors what has happened in other sectors — defense, electronics, automotive, aerospace, oil & gas — in the last decade or so.

Lange believes his willingness to speak at conferences like HPCC helps him connect with others in government and industry that deal with similar types of problems. He is hoping to develop some good relationships at the conference, leading to possible future collaborations. Lange uses events such as these to get to know his counterparts in other organizations.

“I know my counterparts at Chrysler, I know my counterparts at Dreamworks, I know my counterparts at Morgan-Stanley,” said Lange. “I would have never met those individuals if I hadn’t been involved in things like [HPCC]. In a lot of ways they all have similar jobs to mine. They’re trying to bring computing to their innovation process.”

Lange believes that collaboration between the defense, automotive industry, and package goods industry is quite possible. For example, P&G models many of the properties of skin to develop the interaction of its lotion products. Those models could be relevant for a crash test simulation at Ford Motor Company or a battlefield armor protection simulation for the Army.

“In my world I’m worried about wrinkles and freckles,” said Lange. “I’m just trying to make everyone’s life just a little better. But the science and engineering of making everyone’s life a little better has an amazing similarity to what are some of the more complex problems in safety and defense.”

High Performance Pringles

In general, Procter and Gamble use high performance computing modeling to design consumer package goods for a variety of its products: Ivory, Pringles, Charmin, Downy, Tide, Crest, Mr. Clean, Pampers, and a whole range of Hugo Boss products. A fairly recent success story is the Folgers Coffee plastic canister, which features the so-called “Aroma Seal.”

“There’s a lot of complex science and engineering associated with that particular container,” said Lange.

He explains that structural integrity is especially important for hermetically sealed packages. This type of container must be able to withstand pressure changes in elevation when they’re being transported — for example, during shipping, when the product is being driven over 11,000-foot mountain passes. Metal containers are very resistant pressure changes. But metal has drawbacks in maintaining the flavor profiles of foods, such as coffee, whose aroma is a result of its volatile oils. Metal does not react well with those volatile oils, so the coffee flavor tends to degrade over time.

Plastic, on the other hand, is better at preserving the coffee flavor profile. However plastic is not as good at maintaining its structural integrity when undergoing pressure changes during transport. Lange said this can be overcome if you just make the plastic really thick, but this is not very practical from a consumer acceptance and environmental point of view. So the challenge was to design a plastic container that would be both strong and practical for the consumer. For this, Procter and Gamble had to resort to sophisticated computer-aided engineering.

“That plastic coffee canister — the Aroma Seal package — would not exist without modeling,” said Lange. “Packaging, in general, is where this [modeling] gets applied — whether you’re talking about a Tide bottle or any of our liquid products.”

At P&G, product modeling is used to design a range of properties associated with a package, including its manufacturability, its strength and it resistance to leakage. In some cases, modeling is used to create more efficient packaging, so that fewer raw materials are used. This benefits both the manufacturer, because it is less expensive to produce, and the consumer, because its lighter, more compact and friendlier to the environment.

According to Lange, their paper products, including disposable diapers, toilet paper and paper towels is another area where a lot of modeling takes place. Also, substrate-based products such as Swiffer, Bounce, Thermocare have also benefited from high performance computing, employing chemoinformatics and molecular mesoscale modeling to predict the behavior of liquid solutions. Lange said that none of these products would be on the store shelves without modeling.

And then there’s Pringles. One of the reasons the aerodynamics of Pringles is so important is because the chips are being produced so quickly that they are practically flying down the production line.

“We make them very, very, very fast,” said Lange. “We make them fast enough so that in their transport, the aerodynamics are relevant. If we make them too fast, they fly where we don’t want them to, which is normally into a big pile somewhere. And that’s bad.”

Lange notes that the aerodynamics of chips is also important for food processing reasons. In this case, the aerodynamic properties combine with the food engineering issues, such as fluid flow interactions with the steam and oil as the chips are being cooked and seasoned.

Future Applications

Lange thinks that he will be able to use more advanced codes, such as human biomechanical modeling, on next-generation computers. At P&G, he would like to apply biomechanical modeling to design more user-friendly packaging. To the degree Procter and Gamble’s products interface better with the full range of humanity, the more likely he’s going to able to deliver a preferred product in the marketplace.

Lange describes one possible application of this from his own experience. He said he noticed that his mother-in-law, who has arthritis, leaves tops ajar or the caps off on a variety of containers around her home, because it’s too painful for her to continually open and close them.

“It’s a classic engineering dilemma, said Lange. “How do I make something that never leaks but opens easily? Introducing the human into this, in a full biomechanical way, is a complicated problem. It puts a huge demand on computing.”

Lange said that if they had more computing power, they could also perform much finer-grained molecular modeling. For example, they could simulate the nanoscale behavior of liquids. With this capability they would be able to predict the stability and opacity properties of different liquid solutions. Today he can only address those problems with very simple mesoscale representations.

Lange thinks it’s a shame when he occasionally hears his counterparts in the aerospace and automotive sectors say their systems are fast enough today — that no more computing power is really needed. He believes there are problems in all engineering domains that have yet to be addressed because of a lack of computing capability.

“My appetite for computing is insatiable,” admitted Lange. “For every factor of ten that Moore’s Law gives me, I can make use of every bit of it!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This