High Performance (Potato) Chips

By Michael Feldman

May 5, 2006

“I’m going to be talking about things that are very familiar to people,” said Tom Lange, Director of Modeling and Simulation at Procter & Gamble (P&G).

Not the kind of introduction you normally think of when someone speaks about high performance computing applications. But this is exactly what Tom Lange talked about at the High Performance Computing and Communications (HPCC) Conference in Newport, Rhode Island, a few weeks ago. His presentation was titled “The Aerodynamics of Pringles.”

Tom Lange has spent over 27 years at Procter & Gamble, modeling products, processes and production systems — everything from how the aerodynamics of potato chips optimizes production to how baby size affects diaper leakage. Although P&G has really only used high performance computing for the last 10 years or so, its origins go back to the late 70s.

“When I joined Procter & Gamble in 1978, we had high-end IBM 360/370 kinds of computers that we used to solve statistics problems,” said Lange. “Our first finite element analysis kind of problem — something that would look more familiar to a supercomputing person today — we solved using a Boeing computer in the middle of the 1980s. So our exploration of the use of simulations to improve our ability to innovate for the consumer is a legacy that is not just a few years old, but in fact more like 15 years old.”

Today, P&G has a fairly typical setup for commercial users of high performance computing. Lange said they have a heterogeneous computing environment — a shared memory SGI Altix system and a multi-hundred-node cluster. Choosing which system to use depends on their suitability for the specific type of modeling/simulation application.

As far as software goes, P&G gets its codes from a variety of sources. They use software packages from ISVs like Abacus, Fluent and LS-Dyna. Most of P&G’s proprietary code is implemented with user-defined functions within these packages. Lange calls this his “commercial-plus” strategy. At P&G, they have not attempted to maintain internal codes.

P&G also uses some national laboratory codes from both LANL and Sandia National Labs. “The same weapons code used at Los Alamos for more sophisticated purposes is used for combustion code in automotive applications and at P&G for paper products manufacturing,” said Lange.

Procter & Gamble tells its story

Unlike its competitors, P&G’s been publicizing how it uses high performance computing technology for a few years now. Other companies have been much more reticent to share their HPC story with the masses. Even Lange admits this story would not have told at P&G in the 1980s. But the nature of product manufacturing has changed.

“We’re in a global competition for ideas,” said Lange. “There’s no illusion at Procter and Gamble that it’s the only place where smart things happen. Since that illusion is not there, our willingness to say what we do know gives us the hope we’ll learn from others. If we’re just sitting in the back hiding, not saying anything, that doesn’t improve our innovation.”

Procter & Gamble does appear to have a more strategic focus on using HPC technology than its competitors. Lange’s position — the director of modeling and simulation — may be hard to find at other companies that produce package goods. Although modeling may have been used to help with product and package design at P&G ten or fifteen years ago, it wasn’t seen as a critical asset. But today, Lange believes there is an increasing awareness to use this technology to develop and improve products. This mirrors what has happened in other sectors — defense, electronics, automotive, aerospace, oil & gas — in the last decade or so.

Lange believes his willingness to speak at conferences like HPCC helps him connect with others in government and industry that deal with similar types of problems. He is hoping to develop some good relationships at the conference, leading to possible future collaborations. Lange uses events such as these to get to know his counterparts in other organizations.

“I know my counterparts at Chrysler, I know my counterparts at Dreamworks, I know my counterparts at Morgan-Stanley,” said Lange. “I would have never met those individuals if I hadn’t been involved in things like [HPCC]. In a lot of ways they all have similar jobs to mine. They’re trying to bring computing to their innovation process.”

Lange believes that collaboration between the defense, automotive industry, and package goods industry is quite possible. For example, P&G models many of the properties of skin to develop the interaction of its lotion products. Those models could be relevant for a crash test simulation at Ford Motor Company or a battlefield armor protection simulation for the Army.

“In my world I’m worried about wrinkles and freckles,” said Lange. “I’m just trying to make everyone’s life just a little better. But the science and engineering of making everyone’s life a little better has an amazing similarity to what are some of the more complex problems in safety and defense.”

High Performance Pringles

In general, Procter and Gamble use high performance computing modeling to design consumer package goods for a variety of its products: Ivory, Pringles, Charmin, Downy, Tide, Crest, Mr. Clean, Pampers, and a whole range of Hugo Boss products. A fairly recent success story is the Folgers Coffee plastic canister, which features the so-called “Aroma Seal.”

“There’s a lot of complex science and engineering associated with that particular container,” said Lange.

He explains that structural integrity is especially important for hermetically sealed packages. This type of container must be able to withstand pressure changes in elevation when they’re being transported — for example, during shipping, when the product is being driven over 11,000-foot mountain passes. Metal containers are very resistant pressure changes. But metal has drawbacks in maintaining the flavor profiles of foods, such as coffee, whose aroma is a result of its volatile oils. Metal does not react well with those volatile oils, so the coffee flavor tends to degrade over time.

Plastic, on the other hand, is better at preserving the coffee flavor profile. However plastic is not as good at maintaining its structural integrity when undergoing pressure changes during transport. Lange said this can be overcome if you just make the plastic really thick, but this is not very practical from a consumer acceptance and environmental point of view. So the challenge was to design a plastic container that would be both strong and practical for the consumer. For this, Procter and Gamble had to resort to sophisticated computer-aided engineering.

“That plastic coffee canister — the Aroma Seal package — would not exist without modeling,” said Lange. “Packaging, in general, is where this [modeling] gets applied — whether you’re talking about a Tide bottle or any of our liquid products.”

At P&G, product modeling is used to design a range of properties associated with a package, including its manufacturability, its strength and it resistance to leakage. In some cases, modeling is used to create more efficient packaging, so that fewer raw materials are used. This benefits both the manufacturer, because it is less expensive to produce, and the consumer, because its lighter, more compact and friendlier to the environment.

According to Lange, their paper products, including disposable diapers, toilet paper and paper towels is another area where a lot of modeling takes place. Also, substrate-based products such as Swiffer, Bounce, Thermocare have also benefited from high performance computing, employing chemoinformatics and molecular mesoscale modeling to predict the behavior of liquid solutions. Lange said that none of these products would be on the store shelves without modeling.

And then there’s Pringles. One of the reasons the aerodynamics of Pringles is so important is because the chips are being produced so quickly that they are practically flying down the production line.

“We make them very, very, very fast,” said Lange. “We make them fast enough so that in their transport, the aerodynamics are relevant. If we make them too fast, they fly where we don’t want them to, which is normally into a big pile somewhere. And that’s bad.”

Lange notes that the aerodynamics of chips is also important for food processing reasons. In this case, the aerodynamic properties combine with the food engineering issues, such as fluid flow interactions with the steam and oil as the chips are being cooked and seasoned.

Future Applications

Lange thinks that he will be able to use more advanced codes, such as human biomechanical modeling, on next-generation computers. At P&G, he would like to apply biomechanical modeling to design more user-friendly packaging. To the degree Procter and Gamble’s products interface better with the full range of humanity, the more likely he’s going to able to deliver a preferred product in the marketplace.

Lange describes one possible application of this from his own experience. He said he noticed that his mother-in-law, who has arthritis, leaves tops ajar or the caps off on a variety of containers around her home, because it’s too painful for her to continually open and close them.

“It’s a classic engineering dilemma, said Lange. “How do I make something that never leaks but opens easily? Introducing the human into this, in a full biomechanical way, is a complicated problem. It puts a huge demand on computing.”

Lange said that if they had more computing power, they could also perform much finer-grained molecular modeling. For example, they could simulate the nanoscale behavior of liquids. With this capability they would be able to predict the stability and opacity properties of different liquid solutions. Today he can only address those problems with very simple mesoscale representations.

Lange thinks it’s a shame when he occasionally hears his counterparts in the aerospace and automotive sectors say their systems are fast enough today — that no more computing power is really needed. He believes there are problems in all engineering domains that have yet to be addressed because of a lack of computing capability.

“My appetite for computing is insatiable,” admitted Lange. “For every factor of ten that Moore’s Law gives me, I can make use of every bit of it!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently king of accelerated computing) wins again, sweeping all nine Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research computing centers, national labs, federal agencies, and univ Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst firm TechInsights. Nvidia's GPU shipments in 2023 grew by more Read more…

Weekly Wire Roundup: June 2-June 7, 2024

June 8, 2024

Computex (and Jensen Huang) gave us an extra day of news this week, compensating for last week's shorter, holiday-driven news cycle. On Sunday ahead of the official start of Computex, Nvidia's CEO Jensen Huang deliver Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and learning more about the various challenges the students are Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, guiding winds, and atmospheric moisture can all dictate stor Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, Read more…

ASC24: The Battle, The Apps, and The Competitors

June 5, 2024

The ASC24 (Asia Supercomputer Community) Student Cluster Competition was one for the ages. More than 350 university teams worked for months in the preliminary competition to earn one of the 25 final competition slots. The winning teams... Read more…

Computex 2024: Nvidia, AMD Push GPUs; Intel Revs Up x86 Power Efficiency

June 5, 2024

"The days of millions of GPU data centers are coming," said Nvidia CEO Jensen Huang during a keynote at Computex. Huang's predictions are becoming bolder and bo Read more…

Using AI and Robots to Advance Science

June 4, 2024

Even though we invented it, humans can be pretty bad at science. We need to eat and sleep, we sometimes let our emotions regulate our behavior, and our bodies a Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire