High Performance (Potato) Chips

By Michael Feldman

May 5, 2006

“I’m going to be talking about things that are very familiar to people,” said Tom Lange, Director of Modeling and Simulation at Procter & Gamble (P&G).

Not the kind of introduction you normally think of when someone speaks about high performance computing applications. But this is exactly what Tom Lange talked about at the High Performance Computing and Communications (HPCC) Conference in Newport, Rhode Island a few weeks ago. His presentation was titled “The Aerodynamics of Pringles.”

Tom Lange has spent over 27 years at Procter & Gamble, modeling products, processes and production systems — everything from how the aerodynamics of potato chips optimizes production to how baby size affects diaper leakage. Although P&G has really only used high performance computing for the last 10 years or so, its origins go back to the late 70s.

“When I joined Procter & Gamble in 1978, we had high-end IBM 360/370 kinds of computers that we used to solve statistics problems,” said Lange. “Our first finite element analysis kind of problem — something that would look more familiar to a supercomputing person today — we solved using a Boeing computer in the middle of the 1980s. So our exploration of the use of simulations to improve our ability to innovate for the consumer is a legacy that is not just a few years old, but in fact more like 15 years old.”

Today, P&G has a fairly typical setup for commercial users of high performance computing. Lange said they have a heterogeneous computing environment — a shared memory SGI Altix system and a multi-hundred-node cluster. Choosing which system to use depends on their suitability for the specific type of modeling/simulation application.

As far as software goes, P&G gets its codes from a variety of sources. They use software packages from ISVs like Abacus, Fluent and LS-Dyna. Most of P&G’s proprietary code is implemented with user-defined functions within these packages. Lange calls this his “commercial-plus” strategy. At P&G, they have not attempted to maintain internal codes.

P&G also uses some national laboratory codes from both LANL and Sandia National Labs. “The same weapons code used at Los Alamos for more sophisticated purposes is used for combustion code in automotive applications and at P&G for paper products manufacturing,” said Lange.

Procter & Gamble tells its story

Unlike its competitors, P&G’s been publicizing how it uses high performance computing technology for a few years now. Other companies have been much more reticent to share their HPC story with the masses. Even Lange admits this story would not have told at P&G in the 1980s. But the nature of product manufacturing has changed.

“We’re in a global competition for ideas,” said Lange. “There’s no illusion at Procter and Gamble that it’s the only place where smart things happen. Since that illusion is not there, our willingness to say what we do know gives us the hope we’ll learn from others. If we’re just sitting in the back hiding, not saying anything, that doesn’t improve our innovation.”

Procter & Gamble does appear to have a more strategic focus on using HPC technology than its competitors. Lange’s position — the director of modeling and simulation — may be hard to find at other companies that produce package goods. Although modeling may have been used to help with product and package design at P&G ten or fifteen years ago, it wasn’t seen as a critical asset. But today, Lange believes there is an increasing awareness to use this technology to develop and improve products. This mirrors what has happened in other sectors — defense, electronics, automotive, aerospace, oil & gas — in the last decade or so.

Lange believes his willingness to speak at conferences like HPCC helps him connect with others in government and industry that deal with similar types of problems. He is hoping to develop some good relationships at the conference, leading to possible future collaborations. Lange uses events such as these to get to know his counterparts in other organizations.

“I know my counterparts at Chrysler, I know my counterparts at Dreamworks, I know my counterparts at Morgan-Stanley,” said Lange. “I would have never met those individuals if I hadn’t been involved in things like [HPCC]. In a lot of ways they all have similar jobs to mine. They’re trying to bring computing to their innovation process.”

Lange believes that collaboration between the defense, automotive industry, and package goods industry is quite possible. For example, P&G models many of the properties of skin to develop the interaction of its lotion products. Those models could be relevant for a crash test simulation at Ford Motor Company or a battlefield armor protection simulation for the Army.

“In my world I’m worried about wrinkles and freckles,” said Lange. “I’m just trying to make everyone’s life just a little better. But the science and engineering of making everyone’s life a little better has an amazing similarity to what are some of the more complex problems in safety and defense.”

High Performance Pringles

In general, Procter and Gamble use high performance computing modeling to design consumer package goods for a variety of its products: Ivory, Pringles, Charmin, Downy, Tide, Crest, Mr. Clean, Pampers, and a whole range of Hugo Boss products. A fairly recent success story is the Folgers Coffee plastic canister, which features the so-called “Aroma Seal.”

“There’s a lot of complex science and engineering associated with that particular container,” said Lange.

He explains that structural integrity is especially important for hermetically sealed packages. This type of container must be able to withstand pressure changes in elevation when they’re being transported — for example, during shipping, when the product is being driven over 11,000-foot mountain passes. Metal containers are very resistant pressure changes. But metal has drawbacks in maintaining the flavor profiles of foods, such as coffee, whose aroma is a result of its volatile oils. Metal does not react well with those volatile oils, so the coffee flavor tends to degrade over time.

Plastic, on the other hand, is better at preserving the coffee flavor profile. However plastic is not as good at maintaining its structural integrity when undergoing pressure changes during transport. Lange said this can be overcome if you just make the plastic really thick, but this is not very practical from a consumer acceptance and environmental point of view. So the challenge was to design a plastic container that would be both strong and practical for the consumer. For this, Procter and Gamble had to resort to sophisticated computer-aided engineering.

“That plastic coffee canister — the Aroma Seal package — would not exist without modeling,” said Lange. “Packaging, in general, is where this [modeling] gets applied — whether you’re talking about a Tide bottle or any of our liquid products.”

At P&G, product modeling is used to design a range of properties associated with a package, including its manufacturability, its strength and it resistance to leakage. In some cases, modeling is used to create more efficient packaging, so that fewer raw materials are used. This benefits both the manufacturer, because it is less expensive to produce, and the consumer, because its lighter, more compact and friendlier to the environment.

According to Lange, their paper products, including disposable diapers, toilet paper and paper towels is another area where a lot of modeling takes place. Also, substrate-based products such as Swiffer, Bounce, Thermocare have also benefited from high performance computing, employing chemoinformatics and molecular mesoscale modeling to predict the behavior of liquid solutions. Lange said that none of these products would be on the store shelves without modeling.

And then there’s Pringles. One of the reasons the aerodynamics of Pringles is so important is because the chips are being produced so quickly that they are practically flying down the production line.

“We make them very, very, very fast,” said Lange. “We make them fast enough so that in their transport, the aerodynamics are relevant. If we make them too fast, they fly where we don’t want them to, which is normally into a big pile somewhere. And that’s bad.”

Lange notes that the aerodynamics of chips is also important for food processing reasons. In this case, the aerodynamic properties combine with the food engineering issues, such as fluid flow interactions with the steam and oil as the chips are being cooked and seasoned.

Future Applications

Lange thinks that he will be able to use more advanced codes, such as human biomechanical modeling, on next-generation computers. At P&G, he would like to apply biomechanical modeling to design more user-friendly packaging. To the degree Procter and Gamble’s products interface better with the full range of humanity, the more likely he’s going to able to deliver a preferred product in the marketplace.

Lange describes one possible application of this from his own experience. He said he noticed that his mother-in-law, who has arthritis, leaves tops ajar or the caps off on a variety of containers around her home, because it’s too painful for her to continually open and close them.

“It’s a classic engineering dilemma, said Lange. “How do I make something that never leaks but opens easily? Introducing the human into this, in a full biomechanical way, is a complicated problem. It puts a huge demand on computing.”

Lange said that if they had more computing power, they could also perform much finer-grained molecular modeling. For example, they could simulate the nanoscale behavior of liquids. With this capability they would be able to predict the stability and opacity properties of different liquid solutions. Today he can only address those problems with very simple mesoscale representations.

Lange thinks it’s a shame when he occasionally hears his counterparts in the aerospace and automotive sectors say their systems are fast enough today — that no more computing power is really needed. He believes there are problems in all engineering domains that have yet to be addressed because of a lack of computing capability.

“My appetite for computing is insatiable,” admitted Lange. “For every factor of ten that Moore’s Law gives me, I can make use of every bit of it!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This