UCLA Engineers Claim Breakthrough in Semiconductor Research

By Nicole Hemsoth

May 5, 2006

Engineers at the UCLA Henry Samueli School of Engineering and Applied Science are announcing a critical new breakthrough in semiconductor spin-wave research.
 
UCLA Engineering adjunct professor Mary Mehrnoosh Eshaghian-Wilner, researcher Alexander Khitun and professor Kang Wang have created three novel nanoscale computational architectures using a technology they pioneered called “spin-wave buses” as the mechanism for interconnection. The three nanoscale architectures are not only power efficient, but also possess a high degree of interconnectivity.

“Progress in the miniaturization of semiconductor electronic devices has meant chip features have become nanoscale. Today's current devices, which are based on complementary metal oxide semiconductor standards, or 'CMOS,' can't get much smaller and still function properly and effectively. CMOS continues to face increasing power and cost challenges,” Wang said.

In contrast to traditional information processing technology devices that simply move electric charges around while ignoring the extra spin that tags along for the ride, spin-wave buses put the extra motion to work transferring data or power between computer components. Information is encoded directly into the phase of the spin waves. Unlike a point-to-point connection, a “bus” can logically connect several peripherals. The result is a reduction in power consumption, less heat and, ultimately, the ability to make components much smaller as no physical wires are actually used to send the data.

“Design of nanoscale architectures for computing is a very new area, but an important one for the future. In order to produce effective nanoscale devices, we need to actively look at new low power designs that can have efficient interconnectivity and allow scaling beyond current barriers,” Eshaghian-Wilner said.

The idea of using spin waves for information transmission and processing was first developed under the name “spin-wave buses” by UCLA Engineering's Khitun, Wang and graduate researcher Roman Ostroumov.

“We've made a significant effort to demonstrate the operation of spin-based devices at room temperature,” Khitun said. “Our experimental results confirm the intriguing fact that information can be transmitted via spin waves propagating in spin waveguides — ferromagnetic films.”

The innovative work with spin-wave buses recently garnered the trio a prestigious 2006 Inventor Recognition Award from the Microelectronics Advanced Research Corp. The corporation funds and operates university-based research centers in microelectronics technology, seeking to expand cooperative, long-range applied microelectronics research at U.S. universities.

UCLA Engineering's team contends that the creation and detection of spin-wave packets in nanostructures can be used efficiently to perform massively parallel computational operations, allowing for the design of the first practical, fully interconnected network of processors on a single chip. This breaks with currently proposed spintronic architectures, which rely on a charge transfer for information exchange and show significant interconnect problems.

Eshaghian-Wilner, in conjunction with Khitun and Wang, has developed three innovative, spin-wave bus-based designs that use spin waves to achieve the low-power device performance and improved scalability highly desired by industry chip manufacturers.

The first device developed by UCLA engineers, described in a paper presented publicly at the annual ACM International Conference on Computing Frontiers, being held in Ischia, Italy, during the first week of May, is a reconfigurable mesh interconnected with spin-wave buses. The architecture of the device requires the same number of switches and buses as standard reconfigurable meshes, but is capable of simultaneously transmitting multiple waves using different frequencies on each of the spin-wave buses — making the parallel architecture capable of very fast and fault-tolerant algorithms. Unlike the traditional spin-based nanostructures that transmit charge, with this design only waves are transmitted, keeping power consumption extremely low.

“This innovative design represents an original approach for nanoscale computational devices while preserving all of the advantages of wave-based computing,” Eshaghian-Wilner said.

The second architecture invention, details of which will be published at the Nano Science and Technology Institute 9th Annual Nanotechnology Conference and Trade Show — or Nanotech 2006 — being held in Boston during the second week of May, is a fully connected cluster of functional units with spin-wave buses. Each node simultaneously broadcasts to all other nodes, and can receive and process multiple data concurrently. The novel design allows all nodes to intercommunicate in constant time. This invention overcomes traditional area restrictions found in current networks.

The researchers also have developed a spin-wave-based crossbar for fully interconnecting multiple inputs to multiple outputs, and plan to announce the full details of the design at the 2006 IEEE Conference on Nanotechnology to be held in Cincinnati, Ohio, this coming July. As compared to standard molecular crossbar designs, UCLA Engineering's is much more fault-tolerant — allowing alternate paths to be reconfigured in case of switch failure. By transmitting waves instead of traditional current charge transmission, the design architecture allows a large reduction in power consumption and provides a high level of interconnectivity between many more paths than currently possible.

“We're tremendously excited about the future of this research,” Eshaghian-Wilner said. “The designs demonstrate outstanding performance as interconnects for massively parallel integrated circuits.”

“Over the past few years, scientists have studied a variety of methods for designing nanoscale computer architectures. Our collaborative approach using spin-wave buses is a novel one that we hope will lead to additional breakthroughs,” Khitun added.

Currently, various extensions and applications of these three designs are being studied and evaluated by the UCLA Engineering team and their students. Postgraduate researcher Shiva Navab is proposing a set of innovative techniques for mapping biologically inspired types of computations on these models for image processing and neural computations. Other application areas being investigated include bioinformatics and implantable biomedical devices. Heterogeneous integrations of these designs in a complementary fashion with other molecular and nanotechnologies also are being developed.

The architectural methods are undergoing implementation and further testing at the UCLA Device Research Laboratories by research scientists Joon Young Lee, who specializes in spin wave based device processing, and Ming Bao, who carries out the time-resolved inductive voltage measurements aimed at detecting spin waves propagating in 100-nanometer-thick ferromagnetic films. The Device Research Laboratories nano facilities are led by Wang, director of the Functional Engineered Nano Architectonics Focus Center and the newly developed Western Institute of Nanotechnology, all headquartered at the UCLA Henry Samueli School of Engineering and Applied Science.

Licensing inquiries should be directed to Dina Lozofsky at (310) 794-0204 or [email protected].

—–

Source: UCLA News

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This