Accelerating Knowledge Discovery

By Michael Feldman

May 12, 2006

As chief technology officer and senior vice president of SGI, Dr. Eng Lim Goh, has been the driver behind SGI's Project Ultraviolet, the incubator for the company's next-generation, computer platforms. He has been evangelizing the Ultraviolet technologies for some time now, most recently at the HPCC conference in March. With the release of the Altix 4700 platform last month, some of these advanced technologies are now commercially available.

One major focus of Project Ultraviolet is to address the problem of dealing with the enormous databases that are becoming commonplace in both government and industry. Databases in the multi-terabyte, and even petabyte range are no longer exceptional. In particular, a growing number of government agencies have a critical need to perform much more intensive knowledge discovery with these rapidly-growing datasets. But because of the sheer size of the datasets, current HPC systems have difficulty extracting knowledge from them in an efficient manner.

“Because of that, over the years we have been increasingly investing in what we call accelerated knowledge discovery,” said Goh. “We're employing a part of [the Ultraviolet technology] to target this particular problem.”

In April of this year, SGI began delivering their new Altix 4700 platform, which is capable of addressing these knowledge discovery challenges. They already have customers who are using their older systems for this capability, but will benefit greatly from the new Altix 4700 technology.

The basis of the new architecture is the inclusion of much larger amounts of memory, enough to accommodate these extremely large datasets. SGI will use its globally shared memory architecture to allow users to store entire databases — or very large subsets of them — in memory, enabling the data to be processed much more quickly by the system's processors.

“We are talking on the order of multi-terabyte memory, managed by a single operating system,” said Goh.

SGI has already shipped more than a dozen SGI systems with over a terabyte of memory and about a hundred systems of half a terabyte or larger. But the new Altix will have much larger memory capacities. The systems SGI has in mind will scale to tens of terabytes and beyond. In fact, a few SGI customers are already testing with systems in the 10-terabyte range. “The largest we have shipped is a 13-terabyte memory system for the Japan Atomic Energy Agency,” said Goh.

The new Altix 4700 increases the memory headroom significantly, scaling up to 128 terabytes of memory. According to Goh, the physical addressing capability of the Intel Itanium architecture, used on all Altix platforms, is a good fit for these large globally shared memory systems. The x86 class of processors, although they are 64-bit capable, have a 40-bit physical address limit which constrains them to a one terabyte memory reach.

“These x86 processors are ideal for clusters, because they only have to address memory for a single node, explained Goh. “But increasingly, our customers need to go way beyond that. They require every processor in our entire network to see all of the memory of all nodes. The Itanium is the only processor I know of that has enough physical addressing space to cover more than a terabyte.”

But it's not just a matter of big memory; high performing I/O is required as well. The standard Linux I/O performance of one gigabyte-per-second is not adequate. And even this performance level can be a stretch for a single instance of the Linux operating system.

“If you just do the math — ten terabytes at one gigabyte per second — it will take you about a day to fill that database,” said Goh.

To remove the I/O performance barriers in Linux, SGI transferred some of their IRIX OS software technology into the Linux OS kernel. These changes have been accepted by the open source community and are now included in the Linux 2.6 kernel. So with the Linux 2.6 running on SGI hardware, they were able to read and write data to a single file at 10 gigabytes per second. This is just the first step; with the introduction of the Altix 4700, they intend to move well beyond this level of performance.

Goh explained that the third goal of the new architecture, beyond increased memory and I/O bandwidth, is to keep costs in check. One way to do this is to allow memory and processors to scale independently.

“As we grow memory, the customer should not be forced to increase the number of processors — which is typically the case,” said Goh. “If you think of a cluster, once you max out the memory in a node, in order to get more memory, you have to add more nodes.”

For these large database applications, which usually don't require as much computational performance as a typical HPC application, a standard cluster architecture is unbalanced. To make matters worse, since cluster memory is fragmented, not shared, applications can't access the database as a unified object, contributing to software complexity.

“We allow for the ability of the memory to scale independently of the number of processors,” explained Goh. “The way we do it is to put the [intelligence] in the chipset, the things between processors and the memory. So you could have nodes with memory below them, but no processors above them.”

Once users have this big memory capacity and the ability to feed it fast, SGI had to ensure that the memory was reliable. As memory capacity increases to the order of terabytes, hardware errors become statistically more likely, at least for commercial off-the-shelf (COTS) memory. But to keep costs reasonable, the memory needs to be COTS; multi-terabytes of special memory with superior reliability is not economical.

“The customer will not tolerate COTS-class reliability,” said Goh. “If the application has already invested a few minutes or tens of minutes reading the database from disk into memory, the user wants to avoid reloading the data because of memory failures that happen while the application is running.”

So what SGI has done is add extra logic to its chipset to improve memory reliability. The key technology used is a proactive memory scrubber, which is implemented on the HUB chip of the Altix chipset. While the application is running, the scrubber stress-tests portions of memory that the processor is not currently using. If a memory cell is close to failure, the stress-test will actually force a failure, causing the system to deallocate that memory page. This shrinks the available memory pool slightly, but the running application is barely inconvenienced. This solution allows SGI to use COTS hardware to scale out memory.

The increased memory capacity, I/0 bandwidth and memory reliability form the basis of the new Altix 4700 platform. In addition, the new system will be implemented with a blade architecture — instead of the older generation's brick form factor — and include an updated chipset. The 4700 supports a maximum of 512 processor cores within a single node and is able to link up to 8000 cores with SGI's proprietary NUMAlink interconnect. The blade form factor allows very fine-grained configuration options for compute, memory and I/O resources and also substantially improves system density.

Initially, the Altix 4700s will be shipped with the Intel Itanium Madison 9M processors, but will be socket-upgradable to dual-core Montecito processor. According to Goh, there is a huge pent-up demand for the new platform and SGI is working to assure as large a supply as possible with the transition to Montecito.

The Altix 4700 also features FPGA capability with a RASC blade and brings new I/O options including PCI-Express. Other advanced technology features that are part of Project Ultraviolet, such as the processor-in-memory (PIM) technology and vector data movement logic, will not be implemented in the Altix 4700 but will be included in the next-generation platform, scheduled for 2008.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This