Grid Envy

By Michael Feldman

May 19, 2006

Earlier this month, ClusterVision announced that it has been selected to build the DAS-3 Grid (Distributed ASCI Supercomputer) in the Netherlands. The DAS-3 Grid will consist of five Linux supercomputer clusters, with an aggregate theoretical peak performance of more than 3.5 teraflops. The individual clusters will be hosted at four leading Dutch universities and will be connected with SURFnet's dedicated multi-color optical network and Myricom's Myri-10G interconnect. Because of the advanced interconnect technology, data transfer rates between clusters will be up to 80 gigabits per second (Gbps). 

DAS-3 is third-generation DAS. Unlike its DAS-1 (1997) and DAS-2 (2002) predecessors, DAS-3 will use the inter-city SURFnet optical network as the grid's backbone. In total, DAS-3 will link more than 550 AMD Opteron processors, 1 TB of memory and 100 TB of mass storage. The five grid clusters will be installed with the Linux-based ClusterVisionOS cluster operating system.

All the DAS grids were designed as research environments used for studying distributed computing architectures. Topics of interest include parallel programming languages, operating systems research, runtime language systems and algorithmic research. The Ibis open source Java Grid software environment has been studied extensively using the DAS-2 Grid.

Compared to other grids, the DAS architecture is very homogeneous in nature. Although each individual cluster's memory capacity and number of processor may vary, all systems are Opteron-based, running the same Linux OS and linked with the same interconnect hardware. This greatly simplifies system administration. More importantly, since the fundamental characteristics of each system are identical, distributed application performance is much simpler to measure. No “apples to oranges” comparisons are necessary.

Because of this, Dr. Henri Bal, a researcher from Vrije Universiteit, thinks the DAS Grid model is an ideal environment to do parallel computing research.

“You could say it's almost like a laboratory grid,” said Bal. “Some people say it's not really a grid because it's too nice and clean and it's too homogeneous. But you can do really meaningful, controlled experiments.”

The high-speed SURFnet optical ring network and the small size of the Netherlands allows for a rather low latency inter-city interconnect. The Dutch like to remind people that their country is only two milliseconds by three milliseconds in size (in terms of the speed of light in the optical fiber). So they're going to enjoy reasonably low latency across their network, which will allow them to run fairly tightly-coupled distributed computing applications.

Myri-10G Finds Its Natural Habitat

Presumably many of the top high performance interconnect vendors bid for the DAS-3 work. In what has become a crowded field, many companies are offering 10 Gigabit interconnect solutions, either Ethernet or InfiniBand. And although the bidding vendors were not privy to the details of the competition, it's a good bet that the leading InfiniBand and Ethernet interconnect companies all wanted this work.

The selection of Myricom's Myri-10G interconnect for DAS-3 was the result of its dual-protocol capabilities. The product offers Myricom's proprietary Myrinet technology converged with industry-standard Ethernet. At the physical level, the ports are 10 Gigabit Ethernet (GbE). The data rate is 10+10 Gbps, full-duplex. At the data-link level, the links may use either Ethernet or Myrinet protocols.

The Myrinet protocol will be used within the clusters to take advantage of its lower latency and lower CPU overhead (no IP protocol stack). Between clusters, the Myri-10G will use TCP/IP over Ethernet. In both cases the data rates will be uniformly 10 Gbps. According to the Myricom, it's the dual-protocol interoperability that makes their solution so unique.

“This is the first major business that we've seen that depends so critically on the Myrinet-Ethernet convergence,” said Chuck Seitz, Myricom founder and CEO. “Here they're getting it all. They're getting the low latency communication in the clusters; they're getting the Ethernet IP communication between the clusters. It's just plug-and-play.”

Seitz is hard-pressed to contain his enthusiasm for the project. For him, the DAS-3 Grid represents an ideal showcase for Myricom's converged Myrinet-Ethernet technology. Each cluster is expected to be installed with eight 10 GbE links to the Myricom switch, which will be directly connected into the inter-city ring that links the universities. So data traffic between clusters will be on the order of 80 Gbps.

“To me this is the way people interested in performance always wanted to make clusters,” said Seitz. “When this thing goes [operational] in August it's going to be the fastest grid of clusters in the world.”

The largest grid in the United States is the TeraGrid, which includes eight partner sites: NCSA, SDSC, PSC, ORNL, Purdue University, Indiana University, and TACC. Each site connects to the TeraGrid at either 10 or 30 Gbps.

Many other grids, use one or two special server nodes that have interfaces to the typical telecom OC-48 links that go from city to city. Basically, a cluster host talks through a specialized communications server that shuttles data across the backbone. The OC-48 link will support bandwidth up to 2.5 Gbps. The more advanced OC-192 links takes it up to 10 Gbps.

In the DAS model, no communication server nodes are needed. Data is going straight from the Myricom switch into a Nortel router that's connected to SURFnet's WDM optical fiber. According to Seitz, one way to look at it is that the IP protocol stack processing is being done in the cluster host rather than in the communication server. Myricom's solution lets you just extend the communication fabric. So it allows the grid builder to significantly simplify the communication infrastructure.

“This is the dual-protocol interoperability business,” said Seitz, “where the connection between the host in the cluster and the inter-city optics fiber [between clusters] is absolutely seamless. They don't have to add an extra box to shuttle the data around.”

A New Model for Distributed Computing

Seitz is not only hoping that the DAS-3 architecture will become a model for other grids, but for many kinds of high performance wide-area networking applications as well. For example, Manhattan brokerage firms that use a lot of HPC and require high-bandwidth connections to the trading floor can use this sort of set-up to great advantage. Another potential application would be a typical airline reservation system, where two or more sites must do a lot of real-time computing while keeping distributed databases synchronized.

For businesses like these, it costs millions of dollars per minute to go without service, so they perform constant data mirroring for disaster recovery, usually over their own private fiber infrastructures. Seitz believes that the DAS-3 model is a near perfect architecture for supporting these types of applications.

As the cost of optical network communication technology decreases and distributed computing becomes mainstream, more commercial users are going to be looking for ways to take advantage of this new infrastructure. The emergence of enterprise grid applications within the last several years points the way towards more widespread adoption of distributed computing architectures. With their Myri-10G product, Myricom sees itself as a key enabler for this new paradigm.

“This is the way people always wanted to build grids,” said Seitz. “When people in the U.S., Japan, China and other areas of Europe see this, they're going to develop grid envy.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This