Programming Clusters Just Got Easier

By Michael Feldman

May 19, 2006

One of the biggest impediments to HPC application development today is the difficulty of writing software for cluster architectures. Unlike clusters, shared memory machines provide a globally accessible memory space, offering a more programmer-friendly environment for doing parallel processing with large datasets. But since clusters scale so economically, they have become the dominant high performance computing architecture today.

Unfortunately, writing applications for clusters means the programmer has to deal with the hard realities of distributed memory, where data has to be shuffled from one node to the other so that threads can talk with one another and data can be kept in a coherent state. Thus was born the Message Passing Interface (MPI), the de facto standard for parallel programming communications.

In the May issue of CTWatch Quarterly, Thom Dunning, Robert Harrison and Jeffrey Nichols write: “Without fear of contradiction, the MPI standard has been the most significant advancement in practical parallel programming in over a decade, and it is the foundation of the vast majority of modern parallel programs.”

But it's hard to find a real fan of MPI today. Most either tolerate it or hate it. Although it provides a widely portable and standardized programming interface for parallel computing, its shortfalls are numerous: hard to learn, difficult to program, no allowance for incremental parallelization, doesn't scale easily, and so on. It's widely acknowledged that MPI's limitations must be overcome to make parallel programming more accessible.

Dunning, Harrison and Nichols continue: “A completely consistent (and deliberately provocative) viewpoint is that MPI is evil. The emergence of MPI coincided with an almost complete cessation of parallel programming tool paradigm research. This was due to many factors, but in particular to the very public and very expensive failure of HPF. The downsides of MPI are that it standardized (in order to be successful itself) only the primitive and already old communicating sequential process (CSP) programming model, and MPI's success further stifled adoption of advanced parallel programming techniques since any new method was by definition not going to be as portable.”

For the NWChem quantum chemistry application that the authors are discussing in the CTWatch article, the solution to MPI's limitations was the use of the Global Arrays (GA) Toolkit. The Toolkit provides a shared memory style programming environment for use with distributed memory computers. The basic context consists of distributed array data structures — global arrays — used as if they are stored in shared memory. The needed functionality for data distribution and data access is transparent to the programmer. The GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of high performance computers and acknowledges that access to a remote portion of the shared data is slower than to the local portion.

But while the physical nature of distributed memory has been abstracted, the GA interface still requires that explicit calls be added to the code in order to manage the global data.

Which bring us to Cluster OpenMP, a distributed memory version of standard OpenMP developed by Intel. Standard OpenMP is a widely used programming interface for creating parallel applications on shared memory architectures. It's been around since 1997. Like OpenMP, Cluster OpenMP does not require that the programmer invoke explicit library calls to achieve parallelization; this is accomplished with in-line compiler directives. Like GA, it abstracts the physically distributed memory, but it avoids both MPI's and GA Toolkit's reliance on library calls to make things happen.  So you have the ability to switch off the compiler directives in the source code to restore your original serial program. Nice.

The Cluster OpenMP product was released on May 9 and is available with Intel's 9.1 Fortran and C++ compilers. Curiously, no press announcement was forthcoming from Intel about the release. But if you're wondering about Cluster OpenMP, you're in luck. In this issue, Intel's Jay Hoeflinger and Larry Meadows describe their new offering and how it can be used to turn an OpenMP program into a cluster-capable version.

Clustered JVM

This past week, Terracotta Inc., a vendor that provides scalable Java solutions for the enterprise, announced Terracotta 2.0., claimed to be the industry's first production-ready “clustered” Java Virtual Machine (JVM). In contrast with typical frameworks, Terracotta 2.0 clusters at the JVM level, instead of at the software application level, allowing application programmers to write normal Java code that will run transparently in clustered environments.

The Terracotta solution has some similarities to the Cluster OpenMP offering, inasmuch as it abstracts a cluster-wide shared memory. When shared Java objects are accessed by the application, Terracotta's cluster-aware software detects this at the intermediate byte-code level and reads/writes the data from/to the appropriate nodes to keep the objects coherent. Unlike Cluster OpenMP, the Terracotta solution requires no compiler directives; shared data is specified in the Java language itself.

In general, Java is not regarded as a conventional HPC language because of the run-time performance limitations related to its byte-code interpretive model. It's also a little weak in things such as floating-point/complex number support and control of low-level data layout. The Terracotta solution is geared towards high availability business applications that increasing need to scale out to large cluster environments. According to Terracotta engineers, their solution would also be very suitable for cluster and grid management tools, at the meta-level above the HPC applications.

In one of the great paradoxes of high performance computing, the most popular high-level languages for supercomputing applications — C and Fortran — are used not because they're so advanced, but because they're so primitive. C and Fortran source code maps easily to conventional CPU hardware, so the generated assembly code is able to achieve good performance. The result is that we end up using 30-year-old software languages to develop code for state-of-the-art supercomputers. Oh the irony!

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire