Grid Envy

By By Michael Feldman, Editor, HPCwire

May 22, 2006

Earlier this month, ClusterVision announced that it has been selected to build the DAS-3 Grid (Distributed ASCI Supercomputer) in the Netherlands. The DAS-3 Grid will consist of five Linux supercomputer clusters, with an aggregate theoretical peak performance of more than 3.5 teraflops. The individual clusters will be hosted at four leading Dutch universities and will be connected with SURFnet's dedicated multi-color optical network and Myricom's Myri-10G interconnect. Because of the advanced interconnect technology, data transfer rates between clusters will be up to 80 gigabits per second (Gbps). 

DAS-3 is third-generation DAS. Unlike its DAS-1 (1997) and DAS-2 (2002) predecessors, DAS-3 will use the inter-city SURFnet optical network as the grid's backbone. In total, DAS-3 will link more than 550 AMD Opteron processors, 1TB of memory and 100TB of mass storage. The five Grid clusters will be installed with the Linux-based ClusterVisionOS cluster operating system.

All the DAS grids were designed as research environments used for studying distributed computing architectures. Topics of interest include parallel programming languages, operating systems research, runtime language systems and algorithmic research. The Ibis open source Java Grid software environment has been studied extensively using the DAS-2 Grid.

Compared to other grids, the DAS architecture is very homogeneous in nature. Although each individual cluster's memory capacity and number of processor may vary, all systems are Opteron-based, running the same Linux OS and linked with the same interconnect hardware. This greatly simplifies system administration. More importantly, since the fundamental characteristics of each system are identical, distributed application performance is much simpler to measure. No “apples to oranges” comparisons are necessary.

Because of this, Henri Bal, a researcher from Vrije Universiteit, thinks the DAS Grid model is an ideal environment to do parallel computing research.

“You could say it's almost like a laboratory grid,” said Bal. “Some people say it's not really a grid because it's too nice and clean and it's too homogeneous. But you can do really meaningful, controlled experiments.”

The high-speed SURFnet optical ring network and the small size of the Netherlands allows for a rather low latency inter-city interconnect. The Dutch like to remind people that their country is only two milliseconds by three milliseconds in size (in terms of the speed of light in the optical fiber). So they're going to enjoy reasonably low latency across their network, which will allow them to run fairly tightly-coupled distributed computing applications.

Myri-10G Find Its Natural Habitat

Presumably, many of the top high-performance interconnect vendors bid for the DAS-3 work. In what has become a crowded field, many companies are offering 10 Gb interconnect solutions — either Ethernet or InfiniBand. And although the bidding vendors were not privy to the details of the competition, it's a good bet that the leading InfiniBand and Ethernet interconnect companies all wanted this work.

The selection of Myricom's Myri-10G interconnect for DAS-3 was the result of its dual-protocol capabilities. The product offers Myricom's proprietary Myrinet technology converged with industry-standard Ethernet. At the physical level, the ports are 10 Gigabit Ethernet (GbE). The data rate is 10+10 Gbps, full-duplex. At the data-link level, the links may use either Ethernet or Myrinet protocols.

The Myrinet protocol will be used within the clusters to take advantage of its lower latency and lower CPU overhead (no IP protocol stack). Between clusters, the Myri-10G will use TCP/IP over Ethernet. In both cases the data rates will be uniformly 10 Gbps. According to the Myricom, it's the dual-protocol interoperability that makes their solution so unique.

“This is the first major business that we've seen that depends so critically on the Myrinet-Ethernet convergence,” said Chuck Seitz, Myricom founder and CEO. “Here they're getting it all. They're getting the low latency communication in the clusters; they're getting the Ethernet IP communication between the clusters. It's just plug-and-play.”

Seitz is hard-pressed to contain his enthusiasm for the project. For him, the DAS-3 Grid represents an ideal showcase for Myricom's converged Myrinet-Ethernet technology. Each cluster is expected to be installed with eight 10 GbE links to the Myricom switch, which will be directly connected into the inter-city ring that links the universities. So data traffic between clusters will be on the order of 80 Gbps.

“To me this is the way people interested in performance always wanted to make clusters,” said Seitz. “When this thing goes [operational] in August it's going to be the fastest grid of clusters in the world.”

The largest grid in the United States is the TeraGrid, which includes eight partner sites: NCSA, SDSC, PSC, ORNL, Purdue University, Indiana University, and TACC. Each site connects to the TeraGrid at either 10 or 30 Gbps.

Many other grids use one or two special server nodes that have interfaces to the typical telecom OC-48 links that go from city to city. Basically, a cluster host talks through a specialized communications server that shuttles data across the backbone. The OC-48 link will support bandwidth up to 2.5 Gbps. The more advanced OC-192 links takes it up to 10 Gbps.

In the DAS model, no communication server nodes are needed. Data is going straight from the Myricom switch into a Nortel router that's connected to SURFnet's WDM optical fiber. According to Seitz, one way to look at it is that the IP protocol stack processing is being done in the cluster host rather than in the communication server. Myricom's solution lets you just extend the communication fabric. So it allows the grid builder to significantly simplify the communication infrastructure.

“This is the dual-protocol interoperability business,” said Seitz, “where the connection between the host in the cluster and the inter-city optics fiber [between clusters] is absolutely seamless. They don't have to add an extra box to shuttle the data around.”

A New Model for Distributed Computing

Seitz is not only hoping that the DAS-3 architecture will become a model for other grids, but for many kinds of high performance wide-area networking applications as well. For example, Manhattan brokerage firms that use a lot of HPC and require high-bandwidth connections to the trading floor can use this sort of set-up to great advantage. Another potential application would be a typical airline reservation system, where two or more sites must do a lot of real-time computing while keeping distributed databases synchronized.

For businesses like these, it costs millions of dollars per minute to go without service, so they perform constant data mirroring for disaster recovery, usually over their own private fiber infrastructures. Seitz believes that the DAS-3 model is a near perfect architecture for supporting these types of applications.

As the cost of optical network communication technology decreases and distributed computing becomes mainstream, more commercial users are going to be looking for ways to take advantage of this new infrastructure. The emergence of enterprise grid applications within the last several years points the way towards more widespread adoption of distributed computing architectures. With their Myri-10G product, Myricom sees itself as a key enabler for this new paradigm.

“This is the way people always wanted to build grids,” said Seitz. “When people in the U.S., Japan, China and other areas of Europe see this, they're going to develop grid envy.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

What’s New in HPC Research: Cosmic Magnetism, Cryptanalysis, Car Navigation & More

November 8, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Machine Learning Fuels a Booming HPC Market

November 7, 2019

Enterprise infrastructure investments for training machine learning models have grown more than 50 percent annually over the past two years, and are expected to shortly surpass $10 billion, according to a new market fore Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Atom by Atom, Supercomputers Shed Light on Alloys

November 7, 2019

Alloys are at the heart of human civilization, but developing alloys in the Information Age is much different than it was in the Bronze Age. Trial-by-error smelting has given way to the use of high-performance computing Read more…

By Oliver Peckham

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This