Is the Cell Processor Poised for HPC Stardom?

By Michael Feldman

June 2, 2006

Interest in the Cell processor by the high performance computing community appears to be building rapidly. Last week's feature article on the proposed use of the Cell for HPC, “Researchers Analyze HPC Potential of Cell Processor,” generated a large response from our readers. In fact, it was the most downloaded article in this publication's history.

That's not too surprising. With its PowerPC scalar core controlling eight SIMD cores — the synergistic processing elements (SPEs) — the Cell represents the first commodity implementation of a high-performance multi-core heterogeneous processor. In the world of HPC, heterogeneity is seen by many as the next evolutionary step in computer architecture.

However the heterogeneous nature of the Cell is not conventional, in the supercomputing sense. The processor's scalar PowerPC core is used to control the SPE cores and manage the chip's memory hierarchy, while the SPEs themselves do the computation. There's no real division of heterogeneous workloads.

That's not to suggest that the Cell architecture isn't innovative. According to the Berkeley researchers, the three-tiered memory hierarchy, which decouples memory accesses from computation and is explicitly managed by the software, provides some significant advantages over typical cache-based architectures. In fact, the Cell's software-controlled memory system may be its most compelling technological feature, offering a powerful solution to memory latency when data access has some level of predictability.

The Wikipedia reference on the Cell processor offers another way to look at it: “In some ways the Cell system resembles early Seymour Cray designs in reverse.” The Wikipedia notes that the CDC 6600 used one fast processor to handle the math and ten slower systems to keep memory fed with data, while the Cell reverses the model by using the central processor to supply data to the eight math elements.

So how does this translate into an HPC solution? Overall, the impressive power and performance results that the researchers obtained with the Cell do appear to indicate a real potential for high performance computing. When comparing scientific benchmark codes that were run on the AMD Opteron, Intel Itanium 2 and Cray X1E processors, the Cell beat the Opteron and Itanium rather easily, the X1E, less so. The results show that the Cell was about 7 times faster than either the AMD or Itanium and was 15 times more power-efficient than the Opteron and 21 times more power-efficient than the Itanium. Pretty impressive.

The researchers went on to propose a “Cell+” architecture as a way to greatly enhance the architecture's 64-bit floating-point performance for scientific codes. Using this virtual processor, the performance and power-efficiency results more than doubled, when compared to the already blazingly fast Cell.

And, as pointed out by the authors of the research paper, the fact that the Cell will be mass-produced for the Sony PlayStation 3 platform makes it a tempting target for building affordable supercomputing systems. “Cell is particularly compelling because it will be produced at such high volumes that it will be cost-competitive with commodity CPUs,” state the authors.

For anyone in the HPC community, the idea of adopting a commodity architecture that got its start in another market segment should not be too hard to wrap your head around. When Intel introduced the x86 architecture in 1978, and went on to become the standard chip for desktop PCs, who thought it would end up in supercomputers? Even the IBM Blue Gene supercomputer is based on PowerPC chips, whose original habitat was in Apple desktop computers and embedded devices. In contrast, the processors that were specifically designed for high performance computing have struggled in the marketplace. Not because they didn't perform. It's just that the economic model to develop custom chips exclusively for HPC systems is rather tenuous. Just ask Cray or SGI.

So should HPC OEMs start building Cell systems to blow the chips off every other blade and cluster machine out there? Maybe, but it has to be for more than just bragging rights. The IBM Cell-based blade was unveiled this past February and is planned to be generally available in the third quarter of 2006. Mercury Computer Systems has sold several test systems to military and commercial customers, and plans to release its first production-quality Cell blades by the end of June. So there's certainly activity afoot.

But there is the matter of a software ecosystem to contend with. For the benchmark study, the Berkeley researchers admitted to using assembly level insertion to hand-code the algorithms. Obviously for production development, this is unacceptable. A Cell Broadband Engine Software Development Kit, including a compiler, is available from IBM. And with the release of kernel version 2.6.16 in March 2006, the Linux kernel now officially supports the Cell processor. But this is just the start. Many applications will have to be ported to provide a mature software environment.

And some have doubts that the architecture is a useful model for next-generation supercomputing. Here's a few sobering comments from the High-End Crusader:

     “The paper by Williams et al., 'The Potential of the Cell
     Processor for Scientific Computing', is guarded in its
     conclusions and cannot really be faulted. Nonetheless, its
     unintended consequence may be regressive, further retarding the
     emergence of novel computational paradigms upon which the future
     of high-end computing so critically depends.
    
     The paper needs to be put in perspective.
    
     A general-purpose parallel computer must adapt to many
     variations in an application, including granularity,
     communication regularity, and dependence on runtime data. For
     applications with simple static communication patterns, it is
     straightforward to algorithmically schedule/overlap
     communication and computation to optimize performance. In the
     Cell microarchitecture, the programmed scalar core both 1)
     issues nonpreemptive vector threads to vector cores, and 2)
     manages the flow of data between the Cell's off-chip local DRAM
     and the local SRAMs of individual vector cores; this is ideal
     for software-controlled scheduling/overlap, assuming that the
     programming effort can be amortized.
    
     Yet computing is also about parallel applications with dynamic,
     unstructured parallelism. Historically, the correct solution to
     this problem has been dynamic thread creation ('spawning')
     together with dynamic scheduling. We also need hardware support
     for synchronization and scheduling. The authors of the Cell
     paper are cleverly programming a software-controlled memory
     hierarchy to stream operands to a blindingly-fast vector
     processor. By orchestrating pre-communication from local DRAM,
     they _fill_ the vector-thread closures; they tolerate the
     latency to local DRAM by using long messages.
    
     Fine, I suppose. Even so, the better way to avoid the
     approaching train wreck in high-end computing is more progress
     on (heterogeneous) machines with agile threads, cheap
     synchronization, and low-overhead dynamic scheduling, which
     alone can deal with dynamic, unstructured parallelism. These
     machines will be heterogeneous in the deepest sense of the word.
     Software is a major challenge (see 'Heterogeneous Processing
     Needs A Software Revolution', forthcoming).
    
     Finally, sparse MV multiply normally requires random-stride
     access to the source vector 'x'. Are there hidden assumptions in
     this paper (perhaps matrix preconditioning) that allow DMA
     transfer of appropriate blocks of 'x' into local stores of
     vector cores? Is the Cell processor really being touted as a
     _general_ platform for sparse linear algebra?”

One interesting addendum to the story regards the Berkeley researchers' proposed Cell+ architecture, which is designed to enliven the processor's 64-bit floating-point performance. There actually may be an alternative approach for speeding up double-precision performance on this architecture. Jack Dongarra, director of the Innovative Computing Laboratory at the University of Tennessee, and his colleagues have devised software that implements 64-bit floating-point accuracy using 32-bit floating-point math. One of the processors they targeted was the Cell. The results of this work will be featured in an upcoming issue of HPCwire.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Take to the Solar Winds

June 5, 2020

The whims of the solar winds – charged particles flowing from the Sun’s atmosphere – can interfere with systems that are now crucial for modern life, such as satellites and GPS services – but these winds can be d Read more…

By Oliver Peckham

HPC in O&G: Deep Sea Drilling – What Happens Now   

June 4, 2020

At the beginning of March I attended the Rice Oil & Gas HPC conference in Houston. That seems a long time ago now. It’s a great event where oil and gas specialists join with compute veterans and the discussion tell Read more…

By Rosemary Francis

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCSA’s next generation of supercomputers post-Blue Waters,” Read more…

By John Russell

Dell Integrates Bitfusion for vHPC, GPU ‘Pools’

June 3, 2020

Dell Technologies advanced its hardware virtualization strategy to AI workloads this week with the introduction of capabilities aimed at expanding access to GPU and HPC services via its EMC, VMware and recently acquired Read more…

By George Leopold

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

AWS Solution Channel

Join AWS, Univa and Intel for This Informative Session!

Event Date: June 18, 2020

More enterprises than ever are turning to HPC cloud computing. Whether you’re just getting started, or more mature in your use of cloud, this HPC Cloud webinar is an excellent opportunity to gain valuable insights and knowledge to help accelerate your HPC cloud projects. Read more…

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

NCSA Wades into Post-Blue Waters Era with Delta Supercomputer

June 3, 2020

NSF has awarded the National Center for Supercomputing Applications (NCSA) $10 million for its next supercomputer - named Delta – “which will kick-start NCS Read more…

By John Russell

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This