Letter to the Editor: The Tuple Space Solution

By Nicole Hemsoth

June 16, 2006

Dear Mr Feldman:

We think you're exactly right regarding MPI: “It's hard to find a real fan of MPI today. Most people either tolerate it or hate it” [see Programming Clusters Just Got Easier, http://www.hpcwire.com/hpc/663546.html]. But you also write that, “Unfortunately, writing applications for clusters means the programmer has to deal with the hard realities of distributed memory.” In fact, today's programmers can avoid these “hard realities” by using commercially supported tuple space-based software. Tuple space systems were originally introduced in 1986, when Carriero and Gelernter (undersigned) described Linda, the first efficient tuple space implementation on a distributed memory machine, at the ACM Operating System conference.

Tuple space is a virtual shared memory system that's proved to be highly efficient and (equally important) easier to use than any competing system we know. Tuple space systems make distributed programming substantially easier than message passing does; easier than any other type of system we've met. Which isn't surprising. Tuple space systems are fundamentally higher-level than the others. And the best tuple space systems are just as efficient as the low-level solutions.

Today, commercial tuple space systems are widely used in production software development. (The systems referred to here are built and supported by a New Haven software company called Scientific Computing Associates Inc – SCAI; “www/lindaspaces.com”.) Tuple space systems are used in many verticals, in academia and by ISVs. For example: the manufacturer of Gaussian, an important quantum chemistry code, offers a parallel version (Parallel Gaussian) that uses TCP-Linda to run on distributed memory Linux, UNIX, Windows and OS X platforms. Parallel Gaussian is used by chemistry research groups all over the world.

Tuple space systems are the basis, also, of proprietary parallel and distributed apps at such important companies as Lehman Brothers, UBS Warburg and CIBC in financial services, Pfizer in the Life Sciences, Hess and El Paso Natural Gas in the energy vertical; they have been used in the manufacturing and defense sectors too. And many high performance hardware vendors are Linda license-holders.

Modern tuple space implementations, especially SCAI's “NetWorkSpaces,” are significantly higher-level than Cluster OpenMP. They operate not at the level (and in the environment) of conventional programming languages; instead, NetWorkSpaces is a virtual shared-memory enhancement of rapid application development environments such as R, MATLAB, and Python. Users have already voted with their feet: these higher-level environments are displacing programming languages for most application development by working researchers, scientists and engineers (as opposed to professional programmers). Virtual shared memory is the only rational approach to distributed memory machines. And, unlike Cluster OpenMP, virtual shared memory enhancements rise to the user's level instead of dragging the user down.

Which leaves a fascinating question. Why is the parallel programming ecosystem still dominated by C or Fortran plus MPI? Tuple space systems have been judged far easier to use than MPI again and again; otherwise the tuple space apps I've mentioned wouldn't exist. No company will reject a widely-used default and choose an obscure competitor out of sentimentality! And high-level systems such as R, MATLAB and Python have user communities that keep growing too — because they make careful, sparing use of the world's most valuable resource, highly-trained human beings. And yet low-level systems designed for efficiency, not plus but instead of ease-of-use, still dominate parallel programming. Why? There are several reasons, but here is the most important one.

Parallel programming is in the middle of a major transition, from being an insider's game to a sport anyone can play — and everyone who uses computers to compute things, not just for communication and entertainment, will have to play. We saw exactly this kind of transition years ago, centered on operating systems. Once upon a time, operating systems were in the hands of trained professionals. But the rise of the PC meant that henceforth, operating systems had to be for everyone. Soon, sophisticated graphical interfaces had displaced complex, low-level command-line interfaces. Only computer professionals are willing to meet the computer on its level. Non-professionals expect the computer to rise to their levels. Non-professionals (in short) have higher, more exacting, more sophisticated software standards than professionals. (Why? Because they don't like playing with software and weren't trained for it. They have other things to do and want to get on with them.)

Once, parallel and distributed programming was in the hands of professional software developers with a high tolerance for (and the ability to understand) complex, low-level systems. (Like MPI.) But things have changed. Clusters are everywhere. Grids are everywhere (that is, multiple LAN-connected computers that are sometimes used as platforms for parallel apps). A multi-core machine is coming to a desk- or laptop near you soon. Computational demands keep growing — but the electronic speed of processor chips is no longer keeping pace. Perhaps most important, parallel programming is no longer frightening. We see hard problems solved by parallel tasking every day: you order the pizza, someone else get the soda, someone else get the beer, someone else get the napkins and plates, someone else check that the room is free… That's parallel programming; and it's not rocket science.

Operating systems made the transition from MVS/360 and its operator's console to the Mac OS. Parallel programming is on the verge of the same sort of transition: from MPI (with its fussy, low-level communication model) to the high-level simplicity of tuple spaces. Only computer professionals are willing to meet the computer on its level. Non-professionals expect the computer to rise to their levels. Tuple spaces will come out on top.

Yours,
Nicholas Carriero and David Gelernter

—–

Editor's note:

David Gelernter is a professor of computer science at Yale University and national fellow at the American Enterprise Institute. His interests include information management, parallel programming, software ensembles and artificial intelligence. He co-developed the “Linda” programming language with Nicholas Carriero. Gelernter is the author of many books (including “Mirror Worlds,” 1991), has published in many newspapers and magazines (serving as weekly columnist for the New York Post in 1987 and Los Angeles Times in 2005), is board member at the National Endowment for the Arts; his forthcoming book (“The Biblical Republic: America and Americanism”) will be published by Doubleday this year.

Nicholas Carriero is a computer scientist, also at Yale University, where he researches system issues in the development and deployment of software tools for parallelism. He has worked with David Gelernter and the Linda group at Yale, where Carriero has developed variants of C and Fortran that provide Linda's coordination model. This work has included the C-Linda precompiler and analyzer, and support kernels for shared-memory multiprocessors. Carriero's current work includes refinement of existing implementations of the Linda coordination model, development of new implementations, extension of the model, and exploration of parallel programming methodologies. Adaptive parallelism, distributed computing, and “non-traditional” coordination applications are topics of particular emphasis.

Both Gelernter and Carriero are consultants for Scientific Computing Associates Inc., the company that has commercialized the Linda technology.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This