Making Quantum Computing Work in Silicon

By Nicole Hemsoth

June 16, 2006

Quantum computers promise to solve many difficult problems much faster than so-called classical computers, and they will be essential for certain calculations impossible by any other means.

While a quantum computer could conceivably look very different from its classical forebears, hardware that draws on the experience of the classical past — meaning silicon, in this case — would have significant technological and manufacturing advantages. 
 
That's why Thomas Schenkel of Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division (AFRD) and his collaborators are working to demonstrate that a quantum logic system can work in silicon devices. 

“Essentially the goal is to find out if quantum computing is possible with donor electron-spin qubits in silicon,” says Schenkel, explaining that he and his group propose to use the spin states of donor atoms embedded in silicon as the fundamental components of a quantum computer: its quantum bits, or “qubits.” Unlike a classical bit that codes for one state or another — a 1 or a 0 — a qubit encodes these states simultaneously, holding them in superposition until measured.

An often used if overly simple illustration of the potential power of quantum computing is the tiny three-bit register. Whereas a three-bit register in a classical computer outputs just one of eight discrete states (000, 001, 010 … 111), three entangled qubits represent a mixture of all these states simultaneously. In general, the capacity of a quantum computer's register is 2 raised to the power of the number of qubits — in this case 23 — a value that expands rapidly. A few dozen entangled qubits could represent a difficult problem in a vast computational space.

In a classical computer bits are routinely encoded as distinguishable states of a physical system, for example, the orientation of magnetic domains on a hard drive or tape, or the number of electrons stored in transistors on a flash drive. Classical calculations are performed essentially one bit after another. What makes qubits distinctive is that they are subject to the peculiar laws of quantum mechanics, in particular entanglement.

Entangled systems with a limited number of permissible quantum states are spookily “connected.” Two electrons prepared together, one with spin up and one with spin down, remain entangled until a measurement is performed on one of them; when the state of one is measured (spin down, say), the state of the other is instantly determined (spin up), no matter how distant it may be. The same holds true for a dozen entangled particles, or a hundred, or more.

With quantum computing, says Schenkel, “The idea is to find the solution by first acting on all the entangled qubits in parallel through clever quantum gate operations, and then to extract the solution in measurements that simultaneously 'collapse' the superpositions of the entire system to a series of classical zeros and ones.”

One system for realizing a qubit is electron spin, an intrinsic property of electrons that, given an external magnetic field, forms an accessible two-level system. In conventional silicon transistors, group V elements like phosphorus, antimony, and bismuth are widely used as donors — atoms having one more valence electron than group IV silicon and thus useful for adjusting its electronic properties (commonly by causing the silicon to become n-type, or negatively conducting). At low temperature these donors, having one extra electron, represent natural quantum dots; the spin state of the extra electron defines the qubit. 

But the idea of donor electron-spin qubits in silicon is just one of many different proposals for realizing qubits, Schenkel says. Other approaches include schemes involving superconducting tunnel junctions, quantum dots, and neutral atoms in optical lattices. He says, “Ion-trap systems are currently in the lead, with amazing demonstrations of qubit control, with up to eight ions.”

Ion-trap systems electromagnetically suspend ionized atoms in free space and use laser beams to alter and measure their spin states, a tricky procedure. But in the long run, quantum computers based on silicon could be manufactured with familiar materials and methods — maybe even mass produced — and could prove easier to scale up.

One qubit at a time

Demonstrating a working single-qubit device is the first step to proving that quantum computing can work in silicon. Schenkel and his colleagues are developing a field-effect transistor made of isotopically enriched silicon, in which the flow of current through the device is sensitive to the spin state of a single donor atom — a “single-spin readout” device.

Demonstrating the readout of a single donor's electron spin is the biggest part of the challenge, one of three goals Schenkel and his collaborators are pursuing in parallel. Another is to develop a technique for placing the desired number of dopant atoms into the readout devices. They have already demonstrated significant progress toward this end with a scanning-probe alignment instrument that aims and positions an ion beam over a target.

“It will take many qubits to make a quantum computer,” Schenkel says, “and the qubits must remain entangled with one another for long periods of time — long with respect to the time it takes to execute basic quantum-gate operations. Here the coherence times should be at least ten thousand times longer then basic gate operation times. This ensures that error correction techniques can be applied efficiently.”

So the group's third goal is to show that donor atoms can be placed into silicon transistors by ion implantation techniques and still retain their essential spin coherence properties. In a recent article in Applied Physics Letters, Schenkel's team demonstrated that the electrons of donor atoms can indeed maintain their spin states and phase coherence for the length of time needed to perform elemental quantum computing. 

“Spin resonance measurements performed by our collaborator Steve Lyon and members of his group at Princeton University showed phase coherence times several milliseconds long for electron spin states in atoms of antimony, which had been implanted into isotopically enriched silicon,” says Schenkel. The silicon was annealed after ion implantation in a standard heating process that repairs damage to the silicon crystal lattice caused by the implantation itself.

“A donor atom's ability to function as a qubit depends on its being placed on a lattice position,” Schenkel explains. “Implantation is not a gentle process; it's like sending a bowling ball into a bunch of pins. During the rapid annealing step, the scattered pins arrange themselves back into their proper lattice positions. Only now, on one position the pin is replaced by the bowling ball.”

After low doses of antimony were implanted in the silicon, annealing coaxed the antimony donors onto lattice positions where they were electrically active. Their spin states showed remarkably long coherence times, about one millisecond at the slightly chilly temperature of liquid helium. Nor had the antimony atoms diffused much during the annealing, thus fulfilling two of the major requirements needed to demonstrate the team's concept of quantum computation.

These promising results motivate the next, all-important (and much more difficult) step: the development of a readout transistor for single spins.

“Progress in understanding spin coherence properties in silicon, device development, and our work in ion placement are converging, allowing us to shoot for qubit demonstrations in well-tempered transistors”, Schenkel says, although he cautions that there is still “a huge gap between demonstrating a single qubit and a quantum computer with hundreds or thousands of qubits that can outperform current classical computers.”

Yet, says Schenkel, “the appeal of quantum computing in silicon has always been allegedly long spin-coherence times and scalability. We have now shown that coherence times really do remain quite long in realistic predevice structures. Once we can show a reliable single spin readout, we hope that the scalability advantages inherent in mature silicon technology will push the door to multiqubit logic demonstrations wide open.”

Some of the most intriguing possible applications of quantum computers are in methods of encryption and decryption, key to business communications and national security. This is one reason the National Security Agency recently made a $2.8 million “quantum-computing concept maturation” (QCCM) grant to Schenkel's group. While no classified research of any kind is done at Berkeley Lab, the NSA supports basic research on high-performance computing programs, including the quantum computer architectures of the future.  

Of his group's project to demonstrate donor-electron-spin qubits in silicon, Schenkel says, “We have now set up a well defined archery target to shoot at. The QCCM grant represents the bunch of arrows that is handed to us.”

Investigating the theory, fabrication, and measurement of quantum computing devices in silicon with Schenkel are co-investigators Jeffrey Bokor of MSD and the University of California at Berkeley's Department of Electrical Engineering and Computer Sciences; nanofabrication wizard J. A. Liddle of Berkeley Lab's Materials Sciences Division (MSD); Birgitta Whaley and Rogerio de Sousa of UC Berkeley's Department of Chemistry and Pitzer Center for Theoretical Chemistry; and Stephen Lyon and Alexei Tyryshkin of Princeton University's Department of Electrical Engineering.

Additional information

“Electrical activation and electron spin coherence of ultralow dose of antimony implants in silicon,” by T. Schenkel, J. A. Liddle, and A. Persaud of Berkeley Lab; A. M. Tyryshkin and S. A. Lyon of Princeton; R. de Sousa and K. B. Whaley of UC Berkeley; J. Bokor and J. Shangkuan of Berkeley Lab and UC Berkeley; and I. Chakarov of Silvaco International, appeared in the 13 March 2006 issue of Applied Physics Letters (http://www.lbl.gov/Science-Articles/Archive/assets/images/2006/May/17-Wed/Schenkel-Coherence.pdf).

More about theoretical and experimental advances in quantum computing at Berkeley Lab at http://www.lbl.gov/Science-Articles/Archive/sabl/2005/June/02-quantum-comp.html.

More about algorithms for quantum computers at http://www.lbl.gov/Science-Articles/Archive/CSD-quantum-chemistry.html.

—–

This article first appeared in [email protected] Lab (http://enews.lbl.gov/)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This