Making Quantum Computing Work in Silicon

By Nicole Hemsoth

June 16, 2006

Quantum computers promise to solve many difficult problems much faster than so-called classical computers, and they will be essential for certain calculations impossible by any other means.

While a quantum computer could conceivably look very different from its classical forebears, hardware that draws on the experience of the classical past — meaning silicon, in this case — would have significant technological and manufacturing advantages. 
 
That's why Thomas Schenkel of Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division (AFRD) and his collaborators are working to demonstrate that a quantum logic system can work in silicon devices. 

“Essentially the goal is to find out if quantum computing is possible with donor electron-spin qubits in silicon,” says Schenkel, explaining that he and his group propose to use the spin states of donor atoms embedded in silicon as the fundamental components of a quantum computer: its quantum bits, or “qubits.” Unlike a classical bit that codes for one state or another — a 1 or a 0 — a qubit encodes these states simultaneously, holding them in superposition until measured.

An often used if overly simple illustration of the potential power of quantum computing is the tiny three-bit register. Whereas a three-bit register in a classical computer outputs just one of eight discrete states (000, 001, 010 … 111), three entangled qubits represent a mixture of all these states simultaneously. In general, the capacity of a quantum computer's register is 2 raised to the power of the number of qubits — in this case 23 — a value that expands rapidly. A few dozen entangled qubits could represent a difficult problem in a vast computational space.

In a classical computer bits are routinely encoded as distinguishable states of a physical system, for example, the orientation of magnetic domains on a hard drive or tape, or the number of electrons stored in transistors on a flash drive. Classical calculations are performed essentially one bit after another. What makes qubits distinctive is that they are subject to the peculiar laws of quantum mechanics, in particular entanglement.

Entangled systems with a limited number of permissible quantum states are spookily “connected.” Two electrons prepared together, one with spin up and one with spin down, remain entangled until a measurement is performed on one of them; when the state of one is measured (spin down, say), the state of the other is instantly determined (spin up), no matter how distant it may be. The same holds true for a dozen entangled particles, or a hundred, or more.

With quantum computing, says Schenkel, “The idea is to find the solution by first acting on all the entangled qubits in parallel through clever quantum gate operations, and then to extract the solution in measurements that simultaneously 'collapse' the superpositions of the entire system to a series of classical zeros and ones.”

One system for realizing a qubit is electron spin, an intrinsic property of electrons that, given an external magnetic field, forms an accessible two-level system. In conventional silicon transistors, group V elements like phosphorus, antimony, and bismuth are widely used as donors — atoms having one more valence electron than group IV silicon and thus useful for adjusting its electronic properties (commonly by causing the silicon to become n-type, or negatively conducting). At low temperature these donors, having one extra electron, represent natural quantum dots; the spin state of the extra electron defines the qubit. 

But the idea of donor electron-spin qubits in silicon is just one of many different proposals for realizing qubits, Schenkel says. Other approaches include schemes involving superconducting tunnel junctions, quantum dots, and neutral atoms in optical lattices. He says, “Ion-trap systems are currently in the lead, with amazing demonstrations of qubit control, with up to eight ions.”

Ion-trap systems electromagnetically suspend ionized atoms in free space and use laser beams to alter and measure their spin states, a tricky procedure. But in the long run, quantum computers based on silicon could be manufactured with familiar materials and methods — maybe even mass produced — and could prove easier to scale up.

One qubit at a time

Demonstrating a working single-qubit device is the first step to proving that quantum computing can work in silicon. Schenkel and his colleagues are developing a field-effect transistor made of isotopically enriched silicon, in which the flow of current through the device is sensitive to the spin state of a single donor atom — a “single-spin readout” device.

Demonstrating the readout of a single donor's electron spin is the biggest part of the challenge, one of three goals Schenkel and his collaborators are pursuing in parallel. Another is to develop a technique for placing the desired number of dopant atoms into the readout devices. They have already demonstrated significant progress toward this end with a scanning-probe alignment instrument that aims and positions an ion beam over a target.

“It will take many qubits to make a quantum computer,” Schenkel says, “and the qubits must remain entangled with one another for long periods of time — long with respect to the time it takes to execute basic quantum-gate operations. Here the coherence times should be at least ten thousand times longer then basic gate operation times. This ensures that error correction techniques can be applied efficiently.”

So the group's third goal is to show that donor atoms can be placed into silicon transistors by ion implantation techniques and still retain their essential spin coherence properties. In a recent article in Applied Physics Letters, Schenkel's team demonstrated that the electrons of donor atoms can indeed maintain their spin states and phase coherence for the length of time needed to perform elemental quantum computing. 

“Spin resonance measurements performed by our collaborator Steve Lyon and members of his group at Princeton University showed phase coherence times several milliseconds long for electron spin states in atoms of antimony, which had been implanted into isotopically enriched silicon,” says Schenkel. The silicon was annealed after ion implantation in a standard heating process that repairs damage to the silicon crystal lattice caused by the implantation itself.

“A donor atom's ability to function as a qubit depends on its being placed on a lattice position,” Schenkel explains. “Implantation is not a gentle process; it's like sending a bowling ball into a bunch of pins. During the rapid annealing step, the scattered pins arrange themselves back into their proper lattice positions. Only now, on one position the pin is replaced by the bowling ball.”

After low doses of antimony were implanted in the silicon, annealing coaxed the antimony donors onto lattice positions where they were electrically active. Their spin states showed remarkably long coherence times, about one millisecond at the slightly chilly temperature of liquid helium. Nor had the antimony atoms diffused much during the annealing, thus fulfilling two of the major requirements needed to demonstrate the team's concept of quantum computation.

These promising results motivate the next, all-important (and much more difficult) step: the development of a readout transistor for single spins.

“Progress in understanding spin coherence properties in silicon, device development, and our work in ion placement are converging, allowing us to shoot for qubit demonstrations in well-tempered transistors”, Schenkel says, although he cautions that there is still “a huge gap between demonstrating a single qubit and a quantum computer with hundreds or thousands of qubits that can outperform current classical computers.”

Yet, says Schenkel, “the appeal of quantum computing in silicon has always been allegedly long spin-coherence times and scalability. We have now shown that coherence times really do remain quite long in realistic predevice structures. Once we can show a reliable single spin readout, we hope that the scalability advantages inherent in mature silicon technology will push the door to multiqubit logic demonstrations wide open.”

Some of the most intriguing possible applications of quantum computers are in methods of encryption and decryption, key to business communications and national security. This is one reason the National Security Agency recently made a $2.8 million “quantum-computing concept maturation” (QCCM) grant to Schenkel's group. While no classified research of any kind is done at Berkeley Lab, the NSA supports basic research on high-performance computing programs, including the quantum computer architectures of the future.  

Of his group's project to demonstrate donor-electron-spin qubits in silicon, Schenkel says, “We have now set up a well defined archery target to shoot at. The QCCM grant represents the bunch of arrows that is handed to us.”

Investigating the theory, fabrication, and measurement of quantum computing devices in silicon with Schenkel are co-investigators Jeffrey Bokor of MSD and the University of California at Berkeley's Department of Electrical Engineering and Computer Sciences; nanofabrication wizard J. A. Liddle of Berkeley Lab's Materials Sciences Division (MSD); Birgitta Whaley and Rogerio de Sousa of UC Berkeley's Department of Chemistry and Pitzer Center for Theoretical Chemistry; and Stephen Lyon and Alexei Tyryshkin of Princeton University's Department of Electrical Engineering.

Additional information

“Electrical activation and electron spin coherence of ultralow dose of antimony implants in silicon,” by T. Schenkel, J. A. Liddle, and A. Persaud of Berkeley Lab; A. M. Tyryshkin and S. A. Lyon of Princeton; R. de Sousa and K. B. Whaley of UC Berkeley; J. Bokor and J. Shangkuan of Berkeley Lab and UC Berkeley; and I. Chakarov of Silvaco International, appeared in the 13 March 2006 issue of Applied Physics Letters (http://www.lbl.gov/Science-Articles/Archive/assets/images/2006/May/17-Wed/Schenkel-Coherence.pdf).

More about theoretical and experimental advances in quantum computing at Berkeley Lab at http://www.lbl.gov/Science-Articles/Archive/sabl/2005/June/02-quantum-comp.html.

More about algorithms for quantum computers at http://www.lbl.gov/Science-Articles/Archive/CSD-quantum-chemistry.html.

—–

This article first appeared in [email protected] Lab (http://enews.lbl.gov/)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Simulations Explain the Asteroid that Killed the Dinosaurs

May 28, 2020

The supercomputing community has cataclysms on the mind. Hot on the heels of supercomputer-powered research delving into the fate of the neanderthals, a team of researchers used supercomputers at the DiRAC (Distributed R Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This