Making Quantum Computing Work in Silicon

By Nicole Hemsoth

June 16, 2006

Quantum computers promise to solve many difficult problems much faster than so-called classical computers, and they will be essential for certain calculations impossible by any other means.

While a quantum computer could conceivably look very different from its classical forebears, hardware that draws on the experience of the classical past — meaning silicon, in this case — would have significant technological and manufacturing advantages. 
 
That's why Thomas Schenkel of Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division (AFRD) and his collaborators are working to demonstrate that a quantum logic system can work in silicon devices. 

“Essentially the goal is to find out if quantum computing is possible with donor electron-spin qubits in silicon,” says Schenkel, explaining that he and his group propose to use the spin states of donor atoms embedded in silicon as the fundamental components of a quantum computer: its quantum bits, or “qubits.” Unlike a classical bit that codes for one state or another — a 1 or a 0 — a qubit encodes these states simultaneously, holding them in superposition until measured.

An often used if overly simple illustration of the potential power of quantum computing is the tiny three-bit register. Whereas a three-bit register in a classical computer outputs just one of eight discrete states (000, 001, 010 … 111), three entangled qubits represent a mixture of all these states simultaneously. In general, the capacity of a quantum computer's register is 2 raised to the power of the number of qubits — in this case 23 — a value that expands rapidly. A few dozen entangled qubits could represent a difficult problem in a vast computational space.

In a classical computer bits are routinely encoded as distinguishable states of a physical system, for example, the orientation of magnetic domains on a hard drive or tape, or the number of electrons stored in transistors on a flash drive. Classical calculations are performed essentially one bit after another. What makes qubits distinctive is that they are subject to the peculiar laws of quantum mechanics, in particular entanglement.

Entangled systems with a limited number of permissible quantum states are spookily “connected.” Two electrons prepared together, one with spin up and one with spin down, remain entangled until a measurement is performed on one of them; when the state of one is measured (spin down, say), the state of the other is instantly determined (spin up), no matter how distant it may be. The same holds true for a dozen entangled particles, or a hundred, or more.

With quantum computing, says Schenkel, “The idea is to find the solution by first acting on all the entangled qubits in parallel through clever quantum gate operations, and then to extract the solution in measurements that simultaneously 'collapse' the superpositions of the entire system to a series of classical zeros and ones.”

One system for realizing a qubit is electron spin, an intrinsic property of electrons that, given an external magnetic field, forms an accessible two-level system. In conventional silicon transistors, group V elements like phosphorus, antimony, and bismuth are widely used as donors — atoms having one more valence electron than group IV silicon and thus useful for adjusting its electronic properties (commonly by causing the silicon to become n-type, or negatively conducting). At low temperature these donors, having one extra electron, represent natural quantum dots; the spin state of the extra electron defines the qubit. 

But the idea of donor electron-spin qubits in silicon is just one of many different proposals for realizing qubits, Schenkel says. Other approaches include schemes involving superconducting tunnel junctions, quantum dots, and neutral atoms in optical lattices. He says, “Ion-trap systems are currently in the lead, with amazing demonstrations of qubit control, with up to eight ions.”

Ion-trap systems electromagnetically suspend ionized atoms in free space and use laser beams to alter and measure their spin states, a tricky procedure. But in the long run, quantum computers based on silicon could be manufactured with familiar materials and methods — maybe even mass produced — and could prove easier to scale up.

One qubit at a time

Demonstrating a working single-qubit device is the first step to proving that quantum computing can work in silicon. Schenkel and his colleagues are developing a field-effect transistor made of isotopically enriched silicon, in which the flow of current through the device is sensitive to the spin state of a single donor atom — a “single-spin readout” device.

Demonstrating the readout of a single donor's electron spin is the biggest part of the challenge, one of three goals Schenkel and his collaborators are pursuing in parallel. Another is to develop a technique for placing the desired number of dopant atoms into the readout devices. They have already demonstrated significant progress toward this end with a scanning-probe alignment instrument that aims and positions an ion beam over a target.

“It will take many qubits to make a quantum computer,” Schenkel says, “and the qubits must remain entangled with one another for long periods of time — long with respect to the time it takes to execute basic quantum-gate operations. Here the coherence times should be at least ten thousand times longer then basic gate operation times. This ensures that error correction techniques can be applied efficiently.”

So the group's third goal is to show that donor atoms can be placed into silicon transistors by ion implantation techniques and still retain their essential spin coherence properties. In a recent article in Applied Physics Letters, Schenkel's team demonstrated that the electrons of donor atoms can indeed maintain their spin states and phase coherence for the length of time needed to perform elemental quantum computing. 

“Spin resonance measurements performed by our collaborator Steve Lyon and members of his group at Princeton University showed phase coherence times several milliseconds long for electron spin states in atoms of antimony, which had been implanted into isotopically enriched silicon,” says Schenkel. The silicon was annealed after ion implantation in a standard heating process that repairs damage to the silicon crystal lattice caused by the implantation itself.

“A donor atom's ability to function as a qubit depends on its being placed on a lattice position,” Schenkel explains. “Implantation is not a gentle process; it's like sending a bowling ball into a bunch of pins. During the rapid annealing step, the scattered pins arrange themselves back into their proper lattice positions. Only now, on one position the pin is replaced by the bowling ball.”

After low doses of antimony were implanted in the silicon, annealing coaxed the antimony donors onto lattice positions where they were electrically active. Their spin states showed remarkably long coherence times, about one millisecond at the slightly chilly temperature of liquid helium. Nor had the antimony atoms diffused much during the annealing, thus fulfilling two of the major requirements needed to demonstrate the team's concept of quantum computation.

These promising results motivate the next, all-important (and much more difficult) step: the development of a readout transistor for single spins.

“Progress in understanding spin coherence properties in silicon, device development, and our work in ion placement are converging, allowing us to shoot for qubit demonstrations in well-tempered transistors”, Schenkel says, although he cautions that there is still “a huge gap between demonstrating a single qubit and a quantum computer with hundreds or thousands of qubits that can outperform current classical computers.”

Yet, says Schenkel, “the appeal of quantum computing in silicon has always been allegedly long spin-coherence times and scalability. We have now shown that coherence times really do remain quite long in realistic predevice structures. Once we can show a reliable single spin readout, we hope that the scalability advantages inherent in mature silicon technology will push the door to multiqubit logic demonstrations wide open.”

Some of the most intriguing possible applications of quantum computers are in methods of encryption and decryption, key to business communications and national security. This is one reason the National Security Agency recently made a $2.8 million “quantum-computing concept maturation” (QCCM) grant to Schenkel's group. While no classified research of any kind is done at Berkeley Lab, the NSA supports basic research on high-performance computing programs, including the quantum computer architectures of the future.  

Of his group's project to demonstrate donor-electron-spin qubits in silicon, Schenkel says, “We have now set up a well defined archery target to shoot at. The QCCM grant represents the bunch of arrows that is handed to us.”

Investigating the theory, fabrication, and measurement of quantum computing devices in silicon with Schenkel are co-investigators Jeffrey Bokor of MSD and the University of California at Berkeley's Department of Electrical Engineering and Computer Sciences; nanofabrication wizard J. A. Liddle of Berkeley Lab's Materials Sciences Division (MSD); Birgitta Whaley and Rogerio de Sousa of UC Berkeley's Department of Chemistry and Pitzer Center for Theoretical Chemistry; and Stephen Lyon and Alexei Tyryshkin of Princeton University's Department of Electrical Engineering.

Additional information

“Electrical activation and electron spin coherence of ultralow dose of antimony implants in silicon,” by T. Schenkel, J. A. Liddle, and A. Persaud of Berkeley Lab; A. M. Tyryshkin and S. A. Lyon of Princeton; R. de Sousa and K. B. Whaley of UC Berkeley; J. Bokor and J. Shangkuan of Berkeley Lab and UC Berkeley; and I. Chakarov of Silvaco International, appeared in the 13 March 2006 issue of Applied Physics Letters (http://www.lbl.gov/Science-Articles/Archive/assets/images/2006/May/17-Wed/Schenkel-Coherence.pdf).

More about theoretical and experimental advances in quantum computing at Berkeley Lab at http://www.lbl.gov/Science-Articles/Archive/sabl/2005/June/02-quantum-comp.html.

More about algorithms for quantum computers at http://www.lbl.gov/Science-Articles/Archive/CSD-quantum-chemistry.html.

—–

This article first appeared in Science@Berkeley Lab (http://enews.lbl.gov/)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire