PSC Directors Interview, Part II: The Road Ahead

By Nicole Hemsoth

June 16, 2006

In the second part of our interview with Michael Levine and Ralph Roskies, the two scientific co-directors at the Pittsburgh Supercomputing Center (PSC), they talk about the LeMieux computer, the PSC approach to supercomputing, and the challenges that lie ahead for the center. To read part one of the interview, where they talked extensively about the center's Cray XT3 system, go to http://www.hpcwire.com/hpc/686730.html.

HPCwire: LeMieux, your 3,000-processor six-teraflop HP system, which came into service in 2001, was the first NSF terascale system and for several years was the most powerful system available to NSF researchers. At soon-to-be five-years old, it's still one of the most used TeraGrid resources. What are your plans for this system and how much longer can it be useful?

Levine: It can be useful for a very long time. It's a question of how long it will continue to be cost effective. If Moore's Law holds, the amount of computing you can get from initial dollar capitalization keeps improving. On a monthly cost basis, this is a matter of maintenance costs. Likewise with the amount of computing per watt. Power is a large cost factor.

Roskies: At some point, it will no longer be cost effective and we will by then have transitioned the users to the XT3. No one will be left hanging.

Levine: Technically, LeMieux turned out to be a very good machine and continues to be a very good machine, very useful; it's not at a breaking point in any serious sense.

HPCwire: PSC has gained a reputation for its ability to take the leap with new technologies and transform them quickly into productive research tools. Going back to the CRAY Y-MP through half-a-dozen systems up to the XT3, you've received early, if not the first, models of new systems. What are the advantages of this approach? Are there disadvantages?

Roskies: The advantage is the payoff to the scientific community – because new machines will soon enough be sunsetted, as determined by the pace of technological development. So if you can get machines early in their cycle, it means you can use them longer. The earlier you get it, the more science you can get done in the useful lifetime of that machine.

Levine: Also, you bring that capability to the scientific community earlier. You could, of course, wait to introduce any new system into the open research community until it's more mature. But we can get productive use out of this early period, which means it's producing science that much sooner. And it allows us to have more influence with the vendors for the course of development of the system and its application to the NSF research community. This has certainly been the case for our involvement with the XT3 at the Sandia stage.

Roskies: The disadvantage is that there's more work by our systems staff than if we simply waited until the bugs get worked out. The machine would be better understood and it would be less effort to make it available. Of course, we're a major force in making it better understood, so not only are we improving things for our own users, we're improving it for everybody else's XT3 users. Somebody would have to discover these bugs. You can't avoid them.

A benefit to PSC is the cumulative aggregation of knowledge and experience that our staff gain in the process of birthing new systems, over and over, with various vendors and architectures.

Levine: This is a large amount of work, but there's a learning curve. We've learned a great deal about what to look for and how to go about this process, and we have designed our ancillary and support systems to be able to deal with a variety of machines.

For example, the scheduling software that users interact with to send jobs to the XT3 has features we need to make effective use of the machine. Essentially we're re-using technology that we've developed for earlier machines. We have to make it work with this architecture, but the effort of getting it going in the first place was substantial. The fact that we've done this before, that we've made the investment in education and training ourselves, puts us in a position where it makes good sense for us to be doing this work. For us to be doing this – doing the shakedown work with a new architecture and introducing it to the scientific community – is an efficient use of human resources.

HPCwire: Is there a “PSC” way of being a supercomputing center, and if so, what is it?

Roskies: To work with the TeraGrid, the scientific community, and the vendors to maximize scientific output. What we've discovered over the years is that to make this happen effectively entails working very closely with users, the researchers themselves, and it's certainly the case that an emphasis at PSC that has grown and evolved over time is for us to have a strong staff of people who work closely with our users to coordinate and optimize leading-edge applications, and who also contribute to improving the system's behavior.

HPCwire: TeraGrid last year embarked on its second five-year round of funding, this time – unlike the first – with the PSC as a major player. What is PSC's contribution?

Roskies: We are involved and actively participating in TeraGrid in a number of ways. First, we participate directly in overall direction. I'm on the executive steering committee for the Grid Infrastructure Group, the GIG. Michael is the principal contact for PSC as one of the eight resource-provider sites.

We also have a number of our key staff people committed heavily to TeraGrid work. Sergiu Sanielevici, our Director for Scientific Applications and User Support, is one of our most experienced computational scientists. He is now the TeraGrid area director for User Support. He oversees everything that has to do with coordinating between the users who have TeraGrid allocations and getting their work done on the TeraGrid. He coordinates the TeraGrid's ASTA program – Advanced Support for TeraGrid Applications.

Jim Marsteller, who heads our security efforts, leads the TeraGrid effort in security and oversees security policy and implementation. One of our other staffers, Laura McGinnis, has made significant contributions to the TeraGrid accounting system, which – as you can imagine – is quite an undertaking, to keep track of allocations at eight sites with many different systems.

Levine: Beyond this, I would add that with the TeraGrid there's, first, the computational science value to the research community in having a variety of resources and the facility to move between them. Secondly, there's the value of the individual components. In the first category, PSC's contribution is the things Ralph mentioned. In addition to that, at PSC we fulfill a unique function in providing two tightly coupled capability machines, LeMieux and the XT3, which between them over the last half-year or so have provided about 40 percent of overall TeraGrid usage.

HPCwire: What do you see as significant challenges in the years ahead for TeraGrid?
 
Levine: Many technical challenges are involved in creating value added to the resources if you take them as separate, individual pieces. With all the technical challenges, however, the biggest challenge is to not become overly absorbed in these many technical challenges for their own sake, but to keep our eyes on the prize – that is, to keep the focus clearly on making it easier for scientists to do science.

We also want to be able to expand the provider community both in size and in the nature of services provided, to include for example greater data-handling and archiving ability, and we need to continue the effort to broaden the community of users who can benefit from the TeraGrid, such as we're doing with Science Gateways, creating interfaces that provide easy entry to research communities within a field or discipline that share related scientific goals.

HPCwire: What's ahead for PSC?
 
Roskies: It's a very exciting time for computational science. We're pleased and lucky to be, in a sense, voyeurs – to be able to see wonderful and important scientific accomplishments made possible and happening because the technology is progressing at an astounding pace. To be a computational scientist is to live in very interesting times.

We're pleased that NSF is pushing ahead toward petascale computing, and we plan to contribute toward making this happen.

—–

Dr. Michael Levine is Professor of Physics at Carnegie Mellon University, specializing in theoretical particle physics. He is also a founder and Co-Scientific Director of the Pittsburgh Supercomputing Center (PSC). He is the author of numerous papers in computational, theoretical, and particle physics. His physics research over the last few years has been in high order quantum electrodynamics. His earlier work in Physics includes a series of papers applying symbolic computation methods and computational systems devised by him, to fundamental problems in electrodynamics done in collaboration with Professor Ralph Roskies. Professor Levine initiated Carnegie Mellon's degree program in Computational Physics and continues to teach courses in that program. In 1984, together with Ralph Roskies and James Kasdorf of Westinghouse Electric Company, he wrote the proposal to the National Science Foundation for what was eventually to become the PSC. As Scientific Director at PSC, he continues to oversee operations, plan its future course, and concern himself with its scientific impact. He also serves as the Associate Provost for Scientific Computing for Carnegie Mellon University.

Dr. Ralph Roskies is Professor of Physics at the University of Pittsburgh and a founder and Co-Scientific Director of the Pittsburgh Supercomputing Center (PSC). He is the author of over 60 papers in theoretical elementary particle physics. In 1984, together with Professor Michael Levine of Carnegie Mellon University and James Kasdorf from Westinghouse, he developed the proposal to the National Science Foundation for what became the PSC. As Scientific Director, Roskies oversees operations, plans its future course, and concerns himself with its scientific impact. The PSC has been a national leader in providing the highest capability computing to the US national research community. It has pioneered developments in file systems, heterogeneous computing, parallel algorithms and scientific visualization. It currently fields the Terascale Computing System and the first Cray XT3, two of the world's most powerful academically-based computing facilities dedicated to open scientific research. Roskies' pivotal role in developing and implementing the NSF allocation process has given him a very broad overview of leading computational science and close ties to its most prominent practitioners. He has served as advisor to and as reviewer of a large number of U.S. and international supercomputing centers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This