Petaflops and Power Consumption

By Nicole Hemsoth

July 7, 2006

Cray recently won the world's first order for a petaflops computer, which is headed for ORNL in 2008. During the ISC2006 conference, we caught up with Steve Scott, Cray's chief technology officer, and asked for his perspective on the HPC industry's drive toward petascale computing.

HPCwire: ORNL crossed an historic milestone by placing the first petascale order, but NSF, LANL, the DARPA HPCS program and other DOE sites are also aiming for petaflops capability, along with others outside of the U.S. What brought about this strong petaflops momentum?

Scott: One important impetus in the U.S. was certainly the Earth Simulator, which sparked a lot of self-examination, a lot of concern about America's ability to maintain leadership in science and engineering. As a nation, we had been lulled into complacency by our lead in COTS-based HPC systems and were surprised by the dramatic performance lead demonstrated by the Earth Simulator on real applications.

Predictably, there was a split reaction. The defensive reaction was to dismiss the Japanese system as special purpose and therefore safe to ignore. Fortunately, more constructive assessments won out and ultimately led to a series of thoughtful reports from the HECRTF, NAS and others. These helped set the stage for the DARPA HPCS program, which embraces sustained applications performance, for the American Competitiveness Initiative and for the petascale plans within the DOE and NSF.

HPCwire: What's your take on the march toward petascale computing?

Scott: We're on the cusp of a very interesting era in high-end architecture. The single-thread juggernaut is over. We're no longer improving single-processor performance at close to historical rates. Scalability and software capability are major issues, and power consumption is another very important issue, not just for HPC but for the whole computer industry.

HPCwire: This isn't the first time I've heard someone say that. How can the HPC industry deal with the power issue?

Scott: There are two approaches. In the first, you drop the voltage and lower the frequency of individual processors, then compensate by using more processors in a system. Multi-core processors embody this approach to a moderate extent, and some special purpose designs have taken it even farther. The primary concern here is that this approach exacerbates the scaling problem. The memory wall gets worse, there's more memory contention, codes have to be more parallel, the communication-to-computation ratio gets worse, and you have to depend more on locality. This approach is very valid for certain types of applications. For highly local, partitionable applications, for example, it's a good low-power design. The more you push this concept, the more potential power savings you have, but the more special-purpose the machine becomes.

Another alternative is to design processors that have much lower control overhead and use more of their silicon area for performing computations. Streaming processors, vector processors and FPGAs are example of this approach, which can result in much faster single processors for the right types of codes, and thus ease the requirement for greater scaling. This technique can be used to a lesser extent in traditional scalar microprocessors. SSE instructions, for example, are essentially vector instructions that can increase peak performance without a corresponding increase in control complexity. On top of all this, you can also implement adaptive power-management mechanisms to reduce power consumption by idling or voltage scaling selected blocks of logic in the processor. Microprocessor vendors have a big motive to reduce power consumption because it affects their whole market, not just the relatively small HPC segment.

HPCwire: So which techniques do you think hold the most promise?

Scott: I don't think there's one right answer. Ultimately, the important thing is matching the capabilities of the machine with the needs of the applications. The variety of applications calls for a variety of solutions, each optimized for the right system balance. This will lead to more performance-efficiency and power-efficiency.

I think some processor vendors are coming to similar conclusions. AMD just rolled out an aggressive program to open up and license their coherent HyperTransport technology in order to create a heterogeneous ecosystem around the AMD Opteron processor. They're encouraging third parties to develop chips that interface with Opteron and augment Opteron in a variety of ways. AMD is not trying to keep the processor closed and do everything themselves. Cray is participating in this AMD program and leveraging it in our “Cascade” architecture.

What you don't want to do is compromise application performance. In the end, efficiency is defined by meeting the needs of the applications. There's a place for different types of processors. I'm excited because the slowdown in single-thread improvement has created an opportunity to innovate and add some very useful functionality on and around microprocessors.

HPCwire: Switching topics a bit, the Cray XT3 has been winning some big procurements recently. Why?

Scott: When they do the benchmark comparisons, customers are seeing that the Cray XT3 is a balanced system with a bandwidth-rich environment and a scalable design. It costs more on a peak flop basis, but it's more effective on challenging scientific and engineering applications and workloads. As I said earlier, clusters can often handle less-challenging applications really well.

HPCwire: What do you see when you look out ahead?

Scott: One big coming shift is that parallel processing and programming are going mainstream. In 10 years, desktop systems might have tens of processors and serial code will no longer be the answer. We really need to make parallel programming for the masses easier than our current MPI model. The HPCS program is taking an aggressive approach to this important issue by pushing for the development of new high-productivity parallel programming languages.

Another difficult issue is that Moore's Law will likely end by 2020 or soon after that, not because of power consumption but because we'll reach fundamental physical limits. We're going to need to move beyond CMOS.

HPCwire: What comes after CMOS?

Scott: It's a bit too soon to tell. Carbon nanotubes are looking promising.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This