The Heat is On

By Michael Feldman

July 7, 2006

It's been an “early” summer here in San Diego this year. Our typical Pacific Ocean marine layer, which normally keeps the area naturally air-conditioned in May, June and most of July has failed us this year. Temperatures have soared into the nineties in recent weeks and ocean temperatures are already in the seventies. I was reminded of the unusual warm weather as I worked on my computer over the July 4th weekend, with the constant whir of the cooling fan in the background.

I'm not bringing this up to remind everyone about global warming. There's another “inconvenient truth” worth talking about — the collision between rising energy costs and increasing energy consumption by ever more powerful computers. Recent articles in this publication and elsewhere have discussed the problems associated with powering and cooling high-end computers. In fact, it's hard to find an HPC story that doesn't mention the power crisis in supercomputing.

Last week's article on the limits of high performance computing, by John Gustafson of ClearSpeed, illustrates how energy costs have started to dominate overall computing expenditures. He points out that Google's cost of running its server farms are its biggest line item expense. This probably explains why the company is constructing an enormous (and mysterious) computing facility on the banks of the Columbia River, where access to cheap hydroelectric power has apparently acted as a powerful incentive. Oak Ridge National Laboratory's buildup of its supercomputing infrastructure over the next few years, culminating in a petaflops system in 2008, will certainly benefit from its proximity to the energy resources of the Tennessee Valley Authority.

Gustafson's example of the 5 cents/kilowatt-hours energy cost at the Pacific Northwest National Laboratory versus 23 cents/kilowatt-hours at the Maui High Performance Computing Center is a powerful example of how economic geography is affecting the price of computing. Unfortunately, Maui is doubly penalized. Not only are energy costs much higher there, but the constantly warm climate adds to the overall cooling load of the facility and the computers. The increasing importance of electricity costs points to a new reality that will influence how and where supercomputers may be deployed in the future.

In this week's feature interview with Steve Scott, CTO of Cray, he discusses the supercomputing power consumption problem as well. Scott talks about three ways to address the problem: multi-core architectures, specialized processors that use less silicon per computation (for example, streaming processors, vector processors and FPGAs), and intelligent chip-level power management. Certainly the industry is headed down all three paths and each approach promises a significant impact on overall energy consumption.

The recent CTWatch Quarterly article, “Designing and Supporting High-end Computational Facilities,” written by Ralph Roskies (Pittsburgh Supercomputing Center) and Thomas Zacharia (Oak Ridge National Laboratory), devotes a good deal of attention to energy issues. They write:

“Power consideration begins with the ability of the utility company to deliver adequate power to the site from its substations. Be prepared for a shocked reaction from your utility company the first time you call and make your request, especially if you have never done this before.”

In some areas of the country, like parts of California, I'm guessing that the request for an extra megawatt or two from the local utility company may be problematic. Energy-poor countries, like Japan, may have even greater limitations. For example, the recently installed Tokyo Tech TSUBAME supercomputer had to meet very strict power consumption requirements.

Roskies and Zacharia continue:

“The power costs must not only take into account the power needs of the computer, but also the cost of the cooling. As a rule of thumb, multiply the power consumption of the system alone by 35-40 percent to estimate the additional power consumption of the required cooling. Today's rates for power vary substantially over the country, ranging from under 3 cents/kwh to over 10 cents/kwh.”

Hmm… I guess they haven't been to Hawaii recently.

But this brings up a bigger question. What portion of our national energy budget should we expect to allocate for computer infrastructure as we evolve toward an Information Society? Some projections have cyberinfrastructure taking as much as 50 percent of our total energy use within 20 years. But a 2002 RAND Corporation report, titled “Electricity requirements for a digital society,” predicts less than five percent by 2020.

In the RAND study, the conclusion is that the real energy limitations have to do with quality and reliability:

“Increasing use of the Internet and other information and communications technologies (ICTs) marks a U.S. transition toward a 'digital society' that may profoundly affect electricity supply, demand and delivery. RAND developed four 20-year scenarios of ICT evolution (2001-2021) for the U.S. Department of Energy and assessed their implications for future U.S. electricity requirements. Increased power consumption by ICT equipment is the most direct and visible effect, but not necessarily the most important. Over time, the effects that ICTs have on energy management, e-commerce, telework, and related trends will likely be much more consequential. Even large growth in the deployment and use of digital technologies will only modestly increase U.S. electricity use over the next two decades. The more pressing concern for an emerging digital society will be how to provide the higher-quality and more-reliable power that ICTs demand.”

But this still leaves me wondering. As our ancestors evolved into humans — “information beings” so to speak — the amount of energy our brains used, proportional to the rest of our bodies, continued to rise. Today our brains consume 20 percent of our energy while at rest. It seems reasonable to me that an economy based on information processing and knowledge discovery would also demand a bigger cut of the energy pie for its intellectual hardware.

Meanwhile, it looks like another warm weekend for San Diego. Maybe this time I'll just shut down the computer and head to the beach. Even the Information Society has to take a break once in awhile.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire