Senate Subcommittee Hears Testimony on HPC

By Tiffany Trader

July 28, 2006

On July 19, 2006 the Senate Subcommittee on Technology, Innovation, and Competitiveness listened to testimony from expert witnesses on the subject of high performance computing in the context of national competitiveness. The hearing was presided over by Subcommittee Chairman John Ensign (R-NV). Senator Maria Cantwell (D-WA) is the minority lead on the committee.

This hearing has the potential to generate interest in companion Senate legislation to the High Performance Computing Revitalization Act (HR.28) passed by Congress in April 2005, which Cantwell has called “a good framework to start with.”

The witnesses shared their diverse experience to create a varied portrait of the state of high performance computing. What follows is an outline of each of the contributor's main points:

Dr. Simon Szykman, Director, National Coordination Office for Networking and Information Technology Research and Development

Dr. Szykman affirmed the importance of federal funding and interagency coordination with regard to high performance computing in the context of global competitiveness and progress. He stated that over the past few years, high performance computing has become more of a priority in the Federal R&D portfolio. Nowhere is that better documented than in the funding for the NITRD Program, which in five years has seen a budget increase of over 65 percent with a budget request of over $1.3 billion for fiscal year 2007.

He highlighted several examples that have come as a result of interagency collaboration, namely the DARPA HPCS program, the High-End Computing University Research Activity (HEC-URA) program and the development of benchmarks, performance metrics and measurement tools. He also discussed issues of innovation and competitiveness in the global market that came about in March 2002 when Japan's Earth Simulator became the world's fastest supercomputer. Szykman downplayed the occurrence, saying that the Japanese machine now holds sixth place, U.S. vendors are the dominant suppliers of supercomputing systems, and even foreign systems rely overwhelmingly on U.S. technologies.

Szykman went on to say, “The fact that the U.S. currently holds the title of world's fastest supercomputer does not herald a new era in U.S. leadership in high performance computing any more than the loss of the number one position implied a loss of leadership. High performance computing has been — and will continue to be — a cornerstone in the government's networking and information technology R&D portfolio. The clearest demonstration of progress over the past four years, however, should not be viewed in terms of the raw speed of the world's fastest machine, but rather in the context of the growing focus on domestic high performance computing policy, the unprecedented interagency coordination and collaboration on technical planning and implementation taking place within the government research community, and the increasingly cooperative ties between the Government research community and the private sector.”

Dr. Irving Wladasky-Berger, Vice President, Technical Strategy and Innovation at IBM

Dr. Wladasky-Berger discussed advancements in supercomputing and its key applications and outlined a strategy for success long-term success. He listed several key achievements, among them IBM's claim to the three fastest supercomputers: Blue Gene/L, Blue Gene/W and ASC Purple. 

Wladasky-Berger explained how supercomputers enable discoveries and advancements that would not otherwise be possible, citing the discovery of “docking sites” for new drugs and simulations that allow scientists to better understand the earth's climate. He went on to say that while technology, architecture and software are important, the real value of supercomputing to society is in its application in areas as diverse as defense and national security, science, weather/climate, engineering, energy, bioinformatics/biology, health care, business and learning.

From each discipline, Wladasky-Berger provided a myriad of examples. Here are just a few instances. Blue Gene/L conducted materials science simulations critical to national security. Scientists at TJ Watson Research Center are using supercomputers to study “junk DNA” to better understand cell regulation and species evolution. And automobile companies are using supercomputer simulations to improve the safety and fuel-efficiency while reducing costs.

In conclusion, Wladasky-Berger urged government support: “The federal government has significant influence in setting the agenda for basic research and in turn the use of high performance computing in pursuit of innovation and competitiveness. Clear direction and consistent funding will prompt industry and academia to invest as well, and in partnership we can address many of the serious challenges that face our nation. In the process, we will expand and deepen our knowledge of much of the world around us and our ability to influence it. These kinds of efforts unite government, universities and private industry in a productive collaboration – a partnership for which there is no substitute.”

Mr. Christopher Jehn, Vice President, Government Programs Cray Inc.

Mr. Jehn began with an account of Cray's rich history, followed by current challenges to the industry and proposed recommendations. He explained how supercomputing is crucial to the federal government, the largest user of supercomputing in areas such as national defense and homeland security. Additionally, supercomputing has allowed for military superiority, scientific research, technological development, and industrial competitiveness. He claimed that progress in the field has slowed considerably as a result of reduced government funding and industry reluctance to invest in a market that is only two percent of the overall server marketplace.
 
“The lack of advancement in supercomputing technology not only puts our nation's leadership in supercomputing at risk, but it also creates significant technology gaps that threaten our lead in national security, science and engineering, and economic competitiveness,” said Jehn. “This impacts the scientific and engineering community in such a way that many critical computational problems remain unsolvable in a timely and efficient manner.”
 
He notes that the U.S. Government recognizes the importance of a healthy domestic supercomputing industry. He cited a series of recent U.S. government-commissioned studies that all argue for increased federal support for supercomputer research and development. The Defense Department's integrated high-end computing report even recommends quadrupling federal funding for R&D.
 
Jehn outlined what he termed a “crisis in supercomputing.” This opinion is based on the failed promise of commodity-based supercomputers, which is represented by the current trend to scale up systems using inexpensive processors to achieve greater levels of performance. But he contends that, because of the general-purpose nature of these processors, these performance increases come at the cost of computing efficiency. Cray has proposed a paradigm shift in supercomputing — its Adaptive Computing strategy — that will enable the development of much more powerful supercomputers.
 
“But we need federal government support for this vision to reach its fullest potential in a timely manner, as the market is not large enough to fund the risky, leading-edge research and development that is required,” said Jehn. “Our recommendation to this committee and the Congress is to fully fund the Administration's proposed government investments in supercomputing. This includes funding supercomputing programs in the Department of Energy, the National Science Foundation, the National Aeronautics and Space Administration, and within the Department of Defense. To continue international leadership in science, industry and national security, the United States government must fully fund the continued evolution of supercomputers and give scientists access to the computational capability for a wide range of scientific and engineering disciplines. This investment will be justified by an array of future breakthroughs from more efficient, quieter planes and space vehicles to improvements in digital imaging and drug discovery. The promises of supercomputers are limited only by our imagination.”

Mr. Jack Waters, Executive Vice President and CTO, Level 3 Communications Inc.

Mr. Waters illustrated the importance of funding both high performance computing and high performance networking. He focused on the need to share large quantities of information in a timely manner among geographically distributed research centers. The Large Hadron Collider (LGC) exemplifies this need. When it goes online in 2007, it will produce an output stream approaching a terabit per second and will be shared with thirty-four research centers around the world. Current network infrastructure is unable to handle this demand. 

Citing other examples of projects that require or will require extremely high-bandwidth, Waters surmised that costly instrumentation compels researchers to work together rather than duplicate efforts. Interdisciplinary research also calls for collaboration among various centers.

“These two factors, cost efficiency and the need for research collaboration among geographically distributed centers, underlie and motivate the need for efficient, high performance networks to interconnect these various research centers,” said Waters.

In conclusion, Waters shared his vision for the future: “I believe that a federal policy that achieves a balance of investment and focus on the three key elements of the nation's 'cyber-infrastructure' — computing power, software, and networking — is likely to yield the greatest benefits. A balanced approach will: 1) contribute to the attainment of the goals of the American Innovation Act; 2) work to ensure that all of the essential elements of the nation's 'innovation infrastructure' are available to facilitate advanced research; 3) contribute to Homeland Security and National Defense; and 4) fortify the United States' economic and technological competitive position.”

Dr. Joseph Lombardo, Director, National Supercomputing Center for Energy and the Environment University of Nevada, Las Vegas

Dr. Lombardo described how support for high performance computing has waxed and waned in response to perceived foreign competition. For example, initial federal support came with the NSF's 1983 Lax Report in response to concerns over Japan's Sixth Generation Computer. He also demonstrated how government, academic and corporate interested are tied together. Support for high-end “Grand Challenges”, once a priority in the late 1980's, was retracted in 1993. The problems were considered too difficult, and the focus shifted to off-the-shelf technology.

“Scientific and technological preeminence for the U.S. is related directly to high performance computing. Support for federal funding of high performance computing has ebbed and flowed as a result of perceived foreign competition, said Lombardo. “Collaborations of federal laboratories and agencies, academic institutions and corporate interests are key to advancing both technologies and applications, but require federal funding to do so.”

He commented on renewed emphasis on high-end capability. Among several key factors cited are the DARPA program, the High Performance Computing Revitalization Act, the President's 2006 state of the Union Address, and the FY 07 budget which increased DOE's high performance computing programs by almost $100 million.

Lombardo concluded, “Federal funding for high performance computing should encourage development of cutting edge, high-end technologies, capable of addressing 'Grand Challenge' problems as well as mid-range projects.”

Mr. Michael Garrett, Director, Airplane Performance Boeing Commercial Airplanes

Mr. Garrett provided a series of examples detailing how high performance computing has contributed to the development of aircraft design. Of the many benefits achieved are faster solutions to more complex problems, less time to develop new products, and lower overall cost. Of particular interest is how a noise reduction feature called “chevrons” was developed for use in the 787.

“We were able to simulate the noise reduction characteristics of numerous chevron configurations and determine the best configuration for noise reduction before ever testing in the acoustic tunnel or in actual flight test,” said Garrett. “This means the 787 will be a quieter aircraft, making it more environmentally friendly for those who live and work near airports.”

High performance computing together with computational fluid dynamics (CFD) has enabled great strides in wing development. In twenty-five years Boeing's testing requirement decreased from 77 wings to eleven wings for the 787, a reduction of over 80 percent. Garrett reported that those eleven wings required fewer people, less time, and wind tunnel results matched CFD predictions. Boeing envisions a future in which all simulation work will be done computationally; this will allow them to test only two or three wings in the wind tunnel instead of the eleven required for the 787. Boeing's reliance on computing continues to grow and has proved a solid investment.

Garrett commented: “Boeing is committing large amounts of resources to provide the necessary computing capability we require. During the development of the 787, we have nearly doubled the capacity of our high performance computing data center year after year. This is a big investment of capital, but one that we are willing to make because there is a measurable return for that investment. While our high performance computing usage has increased, the cost per unit has been dramatically reduced by 50 percent making our development tools more and more cost effective.”

Dr. Stanley Burt, Director, Advanced Biomedical Computing Center

Dr. Burt described an impressive number of advancements in the field of biology and medicine, all made possible by high performance computing. Emerging biotech tools, such as microarray chips, mass-spectrophotometry devices, advanced microscopy instrumentation, and other technologies are creating an enormous amount of data that can only be analyzed with the help of high performance computers.
 
“Taken together, these new methods and the need to process and analyze the data produced by them have resulted an explosion in the need for high performance computing in biology and medicine,” said Burt. “This need requires both increased capacity, as the sheer volume of data generated is considerable, and also increased capability. One of the confounding problems associated with the needs analysis of this problem is that there does not appear to be any single solution to the problem. Because of the diversity in the algorithmic requirements for analysis of each of these data types, no particular computer hardware seems suited for all of the problems.”
 
Burt discussed cutting-edge medical technology, such as nanotechnology-based treatments, drug design, synthetic enzymes and integrative biology, that have been targeted as computational bottlenecks by the National Cancer Institute. The potential value of these technologies to public health would be enormous, but all would benefit greatly from more advanced computational capabilities.
 
He suggested that a U.S investment in HPC hardware and software would yield large dividends in the advancement of biological research and help keep us globally competitive. He also recommended that we fund several centers for Integrative Computational Technology for Systems Biology. These centers would provide for the integration of biology, computer technology and analytic tools, as well as serve as interdisciplinary training facilities for scientists.
 
Burt concluded: “It has been said that biology will be the science of the 21st century. Due to the complexity of biology, the sheer volume of data, the fact that the environment of a cell, (particularly for cancerous cells) must be taken into account means that biology must be tackled using a systems biology approach. This means that teams of scientists such as biologists, computer scientists, mathematicians, physicists, and chemists should work on these problems in conjunction. In order to do this, it will require cross training to have a meaningful dialogue. I believe that in order for the United States to remain competitive we should devote funding to education and training in the above disciplines. We also need to find mechanisms to encourage young people to enter the scientific field.”

Mr. Tom West, CEO, National LambdaRail

In written testimony, Mr. West emphasized the importance of high-capacity optical networks, outlined the mission of the National LambdaRail (NLR), and urged support for a strong national research infrastructure. West stated that one of the most effective ways to increase the nation's competitiveness is by making high performance resources more available. High-capacity optical networks, such as NLR, are necessary to get the most out of those resources.

“The mission of the NLR is to build an advanced, nationwide network infrastructure to support many types and levels of networks for research, clinical, and educational fields,” explained West. “The infrastructure supports both experimental and production networks, fosters networking research, promotes next-generation applications, and facilitates interconnectivity among regional and international high performance research and education networks. Furthermore, NLR is scalable to accommodate the ever-increasing computing demands of the future.”

Network research will support projects in such fields as high-energy nuclear physics and radio astronomy. However, these types of projects could overwhelm existing networks according to West. These projects need support to meet ever-increasing demands.

West concluded, “Today more than ever, growth in our economy is increasingly linked to the investments made in fundamental research to advance computing and communications technologies. We urge your continued support for strengthening investments in America's future with a strong national research infrastructure for advancing discovery, innovation, and education.”

The webcast and witnesses' written testimony are available here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This