Who’s Driving High Performance Computing?

By Michael Feldman

July 28, 2006

Gone are the days when the U.S. government alone can determine the direction of supercomputing. The commercial growth of HPC over the last two decades has fundamentally changed that dynamic. Adoption of high performance computing in bio-sciences, the financial sector, geo-sciences, engineering and other areas has changed the supercomputing user base in a relatively short period of time.

For many HPC vendors this is a good thing. IDC reports that revenues for the high performance computing market grew by 24 percent in 2005, reaching $9.2 billion. A majority of this revenue is commercial HPC, although the government still represents a significant share. Classified HPC defense spending alone is over a billion dollars.

But maybe more significantly, the vast majority of really high-end supercomputing and cutting-edge research is done with the support of government money. Most multi-million dollar HPC capability systems reside in government-funded supercomputing centers, federal research labs and various undisclosed locations at national security facilities. In the brave new world of commercial HPC, million-dollar-plus capability platforms are the exception. According to IDC, the revenue for these kinds of systems has actually been declining for several years, as less expensive machines have taken their place. Most of the rapid growth in HPC is the result of commodity-based cluster computing, which represented about half of the $9.2 billion in revenue in 2005.

But the U.S. government has some unique problems to solve. Extremely powerful supercomputers are required to support national security applications like nuclear weapons design and testing, cryptography, and aeronautics. Other commercial and scientific applications in areas such as applied physics, biotechnology/genomics, climatological modeling, and engineering can usually (but not always) make due with less-capable systems. Bleeding-edge commercial applications — for example, nanoscale simulation of drug interactions – are emerging, but most of these are being facilitated by government support.

A March 2006 report by the Joint U.S Defense Science Board and the UK Defence Scientific Advisory Council Task Force on Defense Critical Technologies concluded the following:

“Multiple studies, such as the recently completed [November 2004] National Research Council study, conclude that '…the supercomputing needs of the government will not be satisfied by systems developed to meet the demands of the broader commercial market.' The government must bear primary responsibility for ensuring that it has the access to the custom systems that it requires. While leveraging developments in the commercial computing marketplace will satisfy many needs, the government must routinely plan for developing what the commercial marketplace will not, and it must budget the necessary funds.”

Last week at a hearing before the Senate Subcommittee on Technology, Innovation and Competitiveness, several industry and government representatives offered testimony to address some of these issues.

One of the industry representatives to testify was Christopher Jehn, vice president of Government Programs of Cray Inc. He sounded that alarm that advances in HPC technology have slowed and that the promise of commodity-based supercomputers has not materialized. He attributes this to the fact that general-purpose processors and other commodity-based technologies used to build supercomputers were designed for other purposes — essentially, personal computing and enterprise computing. The result is that scientists must expend a lot of effort to get HPC software to run efficiently on these homogeneous commodity-based machines.

“Over the last decade, the computer industry has standardized on commodity processors,” observed Jehn. “With high volume low-cost processors, supercomputer clusters consisting of commodity parts held out a promise to users of ever-more powerful supercomputers at much lower cost. At the same time, the federal government dramatically reduced investments in supercomputing innovation, leaving the future of supercomputing in the hands of industry. But from industry's perspective, the supercomputing market is not large enough to justify significant investment in unique processor designs and custom interconnects — as the supercomputer market is less than two percent of the overall server marketplace, according to International Data Corporation. To advance supercomputing, industry has relied on leveraging innovation from the personal computer and server markets.”

This reflects Cray's “Adaptive Computing” pitch — to advance HPC in a meaningful way, we have to move from homogeneous systems to heterogeneous ones. Just scaling up the current architectures won't get us there. The implication is that the government needs to make a significant investment in technology beyond commodity-based computing.

Dr. Irving Wladawsky-Berger, vice president of Technical Strategy and Innovation, IBM, offered a different perspective. He warned that the government cannot afford to ignore market realities when funding HPC projects. During his career he witnessed the failure of supercomputing companies that relied solely on government-based projects and were heedless of marketplace requirements. He related IBM's success with its Blue Gene architecture as an example of leveraging commodity technology — in this case, PowerPC processors — to build cutting-edge systems.

“Supercomputing was once confined to a niche market, because the hardware was so very expensive,” stated  Wladawsky-Berger. “That changed over time with the introduction of workstation and PC-based technologies, the latter becoming immensely popular in Linux clusters during the late 1990s. Today, we even use low-power, low-cost micros — consumer-based technologies — to attain very high degrees of parallelism and performance, as in our Blue Gene system, which has reached a peak of 360 trillion calculations per second. Now, we are seeking to build supercomputers using technologies from the gaming world, such as the Cell processor. All these approaches leverage components from high-volume markets, and aggregate them using specialized architectures; thus the costs are significantly lower than in earlier days and the potential markets are consequently much bigger.”

From IBM's point of view, Blue Gene is an affirmation that commodity-based supercomputing is a practical model for the future and the government should pay attention to market viability as it looks to invest in new programs.

Dr. Joseph Lombardo, Director National Supercomputing Center for Energy and the Environment at the University of Nevada, Las Vegas, described some of the history of the U.S. government's past investments in high performance computing. He suggests that our federal HPC interests, academia and the larger HPC community are all intertwined and the government needs to act accordingly. He noted that after a brief period of interest in “Grand Challenge” applications in the late 1980's and early 1990's, the government switched its focus to distributed computing and COTS technology. He said while these initiatives led to a broader range of individuals working in scientific computing, it also resulted in starving the high-end of HPC R&D. But after the rise of Japanese supercomputing in the 1990's, the U.S. government once again refocused its efforts in high-end supercomputing

“At the end of the 1990's DARPA and other organizations began to see that foreign countries, such as Asian groups, were overtaking the U.S. position in high performance computing once again, and recommended policies that would fund and support the high end of the field once again,” said Lombardo. “The DARPA High Productivity Computing Systems program is a good example of this shift back toward an emphasis on high-end capability. The DARPA program is focused on providing a new generation of economically viable high productivity computing systems for the national security and industrial user community in the 2010 timeframe. This trend has continued with the High Performance Computing Revitalization Act, the President's 2006 state of the Union Address, and with the FY 07 budget which increased DOE's high performance computing programs by almost $100 million.”

Lombardo's comments suggest that we can balance the government's and industy's need for advanced supercomputing with market realities. He points to the DARPA HPCS program as an example of this approach.

But HPCS may also expose a potential conflict in the government's role. The program's stated goal of “providing a new generation of economically viable high productivity computing systems for national security and for the industrial user community” suggests that HPCS intends to address both the government's and industry's supercomputing needs, and do so within a commercially viable framework. The implication is that all these objectives are compatible.

But national security represents a rather specific set of very high-end supercomputing applications, while the industrial user community represents a very diverse range of HPC users. Can a single supercomputing model (or two) satisfy everyone? Even if we limit the industrial users to potential petascale customers like Boeing, I might still ask the same question.

And what is really meant by “commercially viable?” For supercomputing systems that push the envelope, commercial viability has always been problematic. Vendors usually don't expect such systems to make money straight out of the lab. I understand the desire to produce a general-purpose petascale solution, but I guess it makes me uncomfortable to think the government is going to try to predict the economic viability of a future architecture. After all, DARPA isn't a market research firm.

As commercial HPC continues to expand, the government will be increasingly challenged to control the direction of future supercomputing architectures. Market realities are pushing the hardware and software in a different direction than the needs of some critical high-end HPC users and will probably continue to do so. Such is the nature of capitalism, which, like processor scalability, has its limits. Market forces don't automatically produce optimal results. The government role in HPC, as in other areas, should be to support our national interests.

—–

To find out more about what took place at the Senate's Subcommittee on Technology, Innovation, and Competitiveness hearing on HPC, take a look at our feature article that describes these proceedings. To learn more about the evolving relationship between HPC, the government and business competitiveness, read this week's interview with Suzy Tichenor, Council on Competitiveness vice president, and Bob Graybill, senior Council advisor.

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This