A Grand Challenge DNS at BSC

By Nicole Hemsoth

August 4, 2006

by Sergio Hoyas and Javier Jiménez Sendín
School of Aeronautics, Universidad Politécnica

The main goal of this grand challenge application is to better understand the physics of turbulent boundary layers at high Reynolds numbers. This simulation was performed on the Barcelona Supercomputing Center's supercomputer MareNostrum and is now the world's largest simulation in the field of wall turbulence, with 2e10 grid points.

It is important to note the multi-scale character of the intermediate layer present in turbulent flows. This is where the longest flow structures are found and where the range of scales is widest. The purpose of this experiment is to extend available simulations to a Reynolds number twice as high as had been previously studied. Wall-bounded turbulence has been studied for a long time, but it is only recently — in fact, only with this experiment — that we are able to represent the logarithmic layer linking the near-wall and outer flow regions. This is the location of the self-similar energy and momentum cascades, which are the essence of turbulent flows.

Based on previous simulations and experiments done by other researchers, we have some understanding of the nonlinear dynamics of the near-wall structures and the largest outer scales. Both are essentially single-scale phenomena. However, the dynamics of the intermediate range of scales are more poorly understood because it has been impossible up to now to simulate a Reynolds number large enough for a multi-scale range to be available.

The problem is not just of scientific interest. Wall-bounded turbulence is the interface between the ambient fluid, water or air, and moving vehicles, and between flows and pipes and channels. It is also a key component of the atmospheric boundary layer. The large scales, for example, play an important role in the dispersion of chemical agents in the atmosphere. Due to their associated low frequencies, their pressure fluctuations are responsible for undesirable aerodynamic loads which may result in structural fatigue and long-range noise in vehicles. More than half of the friction drag in vehicles resides in the near-wall and intermediate layers. The hopes of controlling and alleviating these phenomena reside with the understanding of their dynamics.

The Smallest Scale

The program we have developed performs a turbulence simulation using the Navier-Stokes equations for an incompressible fluid in a plane channel between two infinite parallel plates. No modeling is used. The computation is carried out in a doubly periodic domain in two wall-parallel directions, which must be large enough to minimize artifacts due to spurious periodicity. From our experience with lower Reynolds numbers we have chosen a domain of size 25h in the streamwise direction (x) and 10h in the spanwise direction (z) where h is the channel half-thicknesses. This procedure, although both memory- and compute-intensive, allows us to compute any property of the flow with greater accuracy than would be obtainable using experimental measurements in laboratory flows. In particular, it allows us to access variables, such as time- and space-resolved velocity gradients and vorticity, which cannot be measured in the laboratory. The Reynolds number used in the simulation is comparable to those used in many laboratory flows and higher than those used in most of the wall-bounded turbulent flows that have been measured in any detail beyond mean and fluctuating velocities.

The program code is based on previous versions developed by our group during the past fifteen years and broadly follows the standard spectral code developed at the end of the 1980s by groups at Göttingen and at NASA Ames. The version used in our previous simulations has been widely distributed and is now used at the University of TX at Austin and Nagoya University in Japan, for example. For the present simulation, a newer version that removes several limitations of the older code has been developed, saving up to fifty percent of the memory requirements and improving code flexibility. For example, the older version could only be run efficiently in a number of nodes that was a divisor both of the number of computational planes in the wall-normal (y) direction, and of those in the streamwise (x) direction. The former is usually an order of magnitude smaller than the latter, and limited the use of that code to relatively small machines. That limitation has been removed from the present version. The new code also uses a higher-order Runge-Kutta time-stepper, allowing a longer time step, and a 'spectral' sixth-order Compact Finite Differences (CFD) discretization in the y-direction, which allows greater flexibility in the choice of the grid. Those two changes save about a factor of two in computer time.

The code uses Fourier discretization in x-z directions and CFD in the y direction, with mx*my*mz points (6144 * 633 * 4608 in this case). For each sub-step of R-K scheme, the data set is distributed in y-z planes. To avoid load imbalances, the number of processors must be divisible by the number of complex planes, (mgalx/3 after dealising, 2048 in the present case). While in this memory organization, the data is transformed from Fourier space in z to physical space in z. This is needed to compute the nonlinear terms of the Navier-Stokes equations.

After this, the data set is moved from y-z planes to x-lines using MPI routines. Then the data is transformed to physical space in x, and the nonlinear terms are computed using the 3/2 technique to avoid aliasing. The nonlinear term is then transformed back to x-Fourier, moved to y-z planes and transformed to z-Fourier. We then solve the viscous problem and move to the next sub step of the R-K. The two global (all to all) transposes needed in this step constitute most of the communication cost of the code.

In order to run this code in a supercomputer with more than 2048 processes with optimal performance, we did some specific optimization, such as tuning the code to take advantage of the vectorial instruction set of the PPC970-FX  CPU. This was achieved using a version of the FFTW library provided by the Barcelona Supercomputing Center's Deep Computing research group. In addition, the most expensive I/O operations were assigned to dedicated processors to reduce the global file system contention. The latter approach allowed us to overlap the computing stage of 2048 processors with the massive writing operations, using only 60 extra processors. The aim was that the code was able to follow the normal execution while the dedicated processors saved to disk the huge amount of information produced by the code, up to 25 TB for the entire simulation.

The MareNostrum facility became the optimal platform to run this grand Challenge simulation because of the project's computational needs, together with the large amount of memory required per process and the huge amount of data interchanged, roughly 122 EB. It was a challenge for the support team of MareNostrum because of the simulation's size. MareNostrum is a facility available to the global scientific community.

In summary, using close to five million CPU-hours (more than 570 years in a single computer), we performed a landmark simulation in wall turbulence. While the full analysis of the results from this simulation will take several years, some results are already open to the community via the website http://torroja.dmt.upm.es.

—–

For more information, visit the Barcelona Supercomputing Center website at www.bsc.es.

You can contact Sergio Hoyas at [email protected] and Javier Jiménez Sendín at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This