A Grand Challenge DNS at BSC

By Nicole Hemsoth

August 4, 2006

by Sergio Hoyas and Javier Jiménez Sendín
School of Aeronautics, Universidad Politécnica

The main goal of this grand challenge application is to better understand the physics of turbulent boundary layers at high Reynolds numbers. This simulation was performed on the Barcelona Supercomputing Center's supercomputer MareNostrum and is now the world's largest simulation in the field of wall turbulence, with 2e10 grid points.

It is important to note the multi-scale character of the intermediate layer present in turbulent flows. This is where the longest flow structures are found and where the range of scales is widest. The purpose of this experiment is to extend available simulations to a Reynolds number twice as high as had been previously studied. Wall-bounded turbulence has been studied for a long time, but it is only recently — in fact, only with this experiment — that we are able to represent the logarithmic layer linking the near-wall and outer flow regions. This is the location of the self-similar energy and momentum cascades, which are the essence of turbulent flows.

Based on previous simulations and experiments done by other researchers, we have some understanding of the nonlinear dynamics of the near-wall structures and the largest outer scales. Both are essentially single-scale phenomena. However, the dynamics of the intermediate range of scales are more poorly understood because it has been impossible up to now to simulate a Reynolds number large enough for a multi-scale range to be available.

The problem is not just of scientific interest. Wall-bounded turbulence is the interface between the ambient fluid, water or air, and moving vehicles, and between flows and pipes and channels. It is also a key component of the atmospheric boundary layer. The large scales, for example, play an important role in the dispersion of chemical agents in the atmosphere. Due to their associated low frequencies, their pressure fluctuations are responsible for undesirable aerodynamic loads which may result in structural fatigue and long-range noise in vehicles. More than half of the friction drag in vehicles resides in the near-wall and intermediate layers. The hopes of controlling and alleviating these phenomena reside with the understanding of their dynamics.

The Smallest Scale

The program we have developed performs a turbulence simulation using the Navier-Stokes equations for an incompressible fluid in a plane channel between two infinite parallel plates. No modeling is used. The computation is carried out in a doubly periodic domain in two wall-parallel directions, which must be large enough to minimize artifacts due to spurious periodicity. From our experience with lower Reynolds numbers we have chosen a domain of size 25h in the streamwise direction (x) and 10h in the spanwise direction (z) where h is the channel half-thicknesses. This procedure, although both memory- and compute-intensive, allows us to compute any property of the flow with greater accuracy than would be obtainable using experimental measurements in laboratory flows. In particular, it allows us to access variables, such as time- and space-resolved velocity gradients and vorticity, which cannot be measured in the laboratory. The Reynolds number used in the simulation is comparable to those used in many laboratory flows and higher than those used in most of the wall-bounded turbulent flows that have been measured in any detail beyond mean and fluctuating velocities.

The program code is based on previous versions developed by our group during the past fifteen years and broadly follows the standard spectral code developed at the end of the 1980s by groups at Göttingen and at NASA Ames. The version used in our previous simulations has been widely distributed and is now used at the University of TX at Austin and Nagoya University in Japan, for example. For the present simulation, a newer version that removes several limitations of the older code has been developed, saving up to fifty percent of the memory requirements and improving code flexibility. For example, the older version could only be run efficiently in a number of nodes that was a divisor both of the number of computational planes in the wall-normal (y) direction, and of those in the streamwise (x) direction. The former is usually an order of magnitude smaller than the latter, and limited the use of that code to relatively small machines. That limitation has been removed from the present version. The new code also uses a higher-order Runge-Kutta time-stepper, allowing a longer time step, and a 'spectral' sixth-order Compact Finite Differences (CFD) discretization in the y-direction, which allows greater flexibility in the choice of the grid. Those two changes save about a factor of two in computer time.

The code uses Fourier discretization in x-z directions and CFD in the y direction, with mx*my*mz points (6144 * 633 * 4608 in this case). For each sub-step of R-K scheme, the data set is distributed in y-z planes. To avoid load imbalances, the number of processors must be divisible by the number of complex planes, (mgalx/3 after dealising, 2048 in the present case). While in this memory organization, the data is transformed from Fourier space in z to physical space in z. This is needed to compute the nonlinear terms of the Navier-Stokes equations.

After this, the data set is moved from y-z planes to x-lines using MPI routines. Then the data is transformed to physical space in x, and the nonlinear terms are computed using the 3/2 technique to avoid aliasing. The nonlinear term is then transformed back to x-Fourier, moved to y-z planes and transformed to z-Fourier. We then solve the viscous problem and move to the next sub step of the R-K. The two global (all to all) transposes needed in this step constitute most of the communication cost of the code.

In order to run this code in a supercomputer with more than 2048 processes with optimal performance, we did some specific optimization, such as tuning the code to take advantage of the vectorial instruction set of the PPC970-FX  CPU. This was achieved using a version of the FFTW library provided by the Barcelona Supercomputing Center's Deep Computing research group. In addition, the most expensive I/O operations were assigned to dedicated processors to reduce the global file system contention. The latter approach allowed us to overlap the computing stage of 2048 processors with the massive writing operations, using only 60 extra processors. The aim was that the code was able to follow the normal execution while the dedicated processors saved to disk the huge amount of information produced by the code, up to 25 TB for the entire simulation.

The MareNostrum facility became the optimal platform to run this grand Challenge simulation because of the project's computational needs, together with the large amount of memory required per process and the huge amount of data interchanged, roughly 122 EB. It was a challenge for the support team of MareNostrum because of the simulation's size. MareNostrum is a facility available to the global scientific community.

In summary, using close to five million CPU-hours (more than 570 years in a single computer), we performed a landmark simulation in wall turbulence. While the full analysis of the results from this simulation will take several years, some results are already open to the community via the website http://torroja.dmt.upm.es.

—–

For more information, visit the Barcelona Supercomputing Center website at www.bsc.es.

You can contact Sergio Hoyas at [email protected] and Javier Jiménez Sendín at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This