Developing Data Solutions at NCSA

By Trish Barker

August 11, 2006

Sensors and instruments are the foot soldiers of science. They gather and generate the data that fuels investigation of phenomena ranging from the chemical reactions in rippling coastal waters to the energy rippling from quasars in deep space.

While the data provided by sensors and instruments are a boon, managing, processing, and storing the flood of data presents a challenge. NCSA is collaborating with the National Optical Astronomy Observatory (NOAO) to develop solutions for managing the tens to hundreds of gigabytes of data generated each night by its observatories. Using these solutions as first steps, the ultimate goal is to meet the needs of the Large Synoptic Survey Telescope (LSST); when LSST begins operation in 2013 it will generate an estimated 15 terabytes of raw data and more than 100 terabytes of processed data every night, 365 days a year. NCSA leads two of the three LSST data management teams and is responsible for managing the integrated work plans, tracking progress, reporting to the LSST Corporation, and coordinating a series of data challenges.

“Our NOAO/NCSA relationship provides very natural growth to LSST,” says Chris Smith, astronomer and manager of the Data Products Program at NOAO, the group in charge of developing and operating the NOAO data management system. “There are large datasets accumulating today, and really cutting-edge developments are being implemented and are benefiting scientists tomorrow rather than in 2013.”

Working closely with domain scientists is a hallmark of NCSA's approach to the development of cyberenvironments — which encompass and integrate distributed computing and data resources, scientific application codes, workflow tools, and user-friendly interfaces into end-to-end scientific processes. NOAO brings scientific depth to the collaboration, while NCSA brings both technological expertise and experience in supporting astronomy research.

“We can talk to each other very well, and we complement each other very well,” Smith says.

“The great thing about this partnership with NOAO is we have a living, breathing community to work with,” says Ray Plante, a senior research scientist at NCSA and the leader of the center's LSST effort.

A larger telescope, and more data

The Large Synoptic Survey Telescope project can be broken into three parts, each presenting challenges: the telescope, the camera, and the data management system.

The 3.2-gigapixel camera will be the largest ever built. The telescope itself must be both very large (with an 8-meter mirror) and provide a very wide field of view; most mirrors of that size are designed to have a small field of view. “It's a novel telescope design,” Smith says. The telescope's three heavy mirrors will need to be stringently aligned, “and of course you can't just do it in a fixed configuration,” Smith adds. “You have to move it and you have to move it fast” in order to survey the sky.

“It's challenging enough that they can't even develop the final design until they know what mountain it will go on, because the foundation under the telescope matters,” he says.

When the camera and telescope are completed and operational, LSST will image the entire viewable sky every three days. Its comprehensive, time-lapse imaging will provide an unprecedented census of the solar system, including transient objects like comets and potentially hazardous near-Earth asteroids. That prospect excites Smith, whose own research deals with supernovae, and other astronomers.

“This system will be a great driver for the discovery of unexpected things,” he says. “There's a lot of needles in the haystack that we haven't been able to find because the haystack isn't big enough.” More detailed observations expand the haystack of data that astronomers are searching.

LSST's repeated sweeps of the sky will also help to reduce noise, allowing astronomers to home in on fainter and fainter objects; by seeing farther and farther into the universe they are also seeing further and further into the past. “This is going to be very important in understanding the early universe,” Plante says.

And in perhaps its most mysterious challenge, LSST aims to provide crucial clues about the nature of “dark energy,” the enigma that is causing the expansion of the universe to accelerate.

In order to gain these insights, however, scientists must manage and analyze the incoming data. The 15 terabytes of raw images generated each night must be transmitted from the telescope and processed—generating a combined total of raw and processed data products that will top 100 terabytes each night. The data pipeline must also allow for quick, near real-time processing in order to provide feedback to the telescope to optimize imaging and to promptly alert the astronomy community about interesting observations, allowing researchers around the world to turn their telescopes toward the detected phenomena at the right time.

NCSA provides data archive

To lay the foundation for the LSST cyberenvironment, NCSA and NOAO are developing a prototype data pipeline using the vast stores of data generated by the ground-based observatories NOAO oversees: Kitt Peak in Arizona, Cerro Tololo Inter-American in Chile, and the Gemini Science Center, with observatories in Chile and Hawaii.

NCSA created a mirror of the NOAO data archive in Urbana. The archive replication system is built on the Storage Resource Broker (SRB) middleware developed at the San Diego Supercomputer Center (SDSC) and a transfer queuing system NCSA developed for its archive of data from the Berkeley-Illinois-Maryland Array (BIMA) radio telescope.

Mirroring NOAO's archive not only gives astronomers a high-bandwidth site from which to access data, it is also part of a strategy of security through redundancy, ensuring that data will survive at one site even if a catastrophic event hits another site. NCSA's robust mass storage system archives more than 2.3 petabytes of researchers' data, with data added at a rate of 40 to 60 terabytes each month.

Michelle Butler, the manager of NCSA's Storage Enabling Technologies group, says the data management expertise of the center's staff-encompassing experience with running large file systems, parallel file systems, many storage architecture types, HPC storage, and database storage — is as much of an asset as the storage infrastructure.

“NCSA storage is designed with a long-term view,” Plante says. “I can go back to data that's nearly as old as NCSA and have confidence that it will be there.”

Archiving the data at NCSA also will enable astronomers to take advantage of the center's 41 teraflops of high-performance computing power to process the data. Raw observatory data is marred by artifacts of the observing site, the weather conditions, and the instrument itself; it's as though each image is blurred by fingerprints that need to be wiped away so astronomers can get a sharp view of the data.

“We want to get a picture as if it were taken in space, so we have to take out the effects of the telescope and take out the effects of the atmosphere,” explains Plante.

Tools for accessing data

As challenging as the tasks of capturing, moving, processing, and storing data are, they are just the preliminary steps. The real excitement begins when astronomers can access and analyze the data.

For LSST, community access will be provided through a Web-based virtual observatory (VO). Therefore, NOAO and NCSA are working to develop the VO model and VO tools, including an authentication and authorization framework for the NOAO portal, an online tool that enables users to find, access, and analyze the data available through multiple public archives, such as the Sloan Digital Sky Survey, Canadian Network for Observational Cosmology, Chandra X-ray Observatory Center, and others.

“The NCSA/NOAO collaborative effort provides a backbone for secure data access, which is a vital component for astronomical portals and multi-location image archives,” says Chris Miller, an assistant astronomer at Cerro Tololo Inter-American Observatory and one of the collaborators on the NOAO portal project. “These security measures are currently missing from … most astronomical archive tools and services.”

By leveraging grid technologies — including the Globus Toolkit, NCSA's MyProxy, and PURSe (Portal-based User Registration System) — NCSA and developers from both Argonne National Laboratory and the National Virtual Observatory project have simplified the authentication and authorization process for users. When users log in, the portal knows which services and data they can access and which are withheld from them.

This prototype portal (http://nvo.noao.edu) was demonstrated in January at the American Astronomical Society Meeting in Washington, D.C. “Our demo included the ability for users to register and log on so that only they could see their proprietary data,” Miller explains. “The next version, scheduled to be complete by July, will have a fully implemented security model developed by NCSA in collaboration with the NOAO.”

The grid-based security framework will serve as an international standard for virtual observatory interoperability.

“The development of this security model is fully within the standards and procedures defined by the International Virtual Observatory Alliance,” Miller says. “Thus, led by Ray Plante and Ramon Williamson at NCSA, and in collaboration with the NOAO Data Products Program Team based in Chile, we are leading the nation in applying a standard user authentication and authorization model to astronomical portals, archives, and analysis services.”

Testing the prototype pipeline

In July 2006, the LSST project began its first Data Challenge, a test designed to evaluate the development of the data pipeline. The annual challenges will provide feedback for the team and will help the collaborators further refine the requirements of the LSST pipeline.

When the observatory begins operation in 2013, data will move from the telescope to a nearby base camp, where some limited data processing will take place in order to provide feedback to the telescope and rapid alerts to the astronomy community. From the base camp, raw data will be transmitted to archive centers for processing, storage, and dissemination to astronomy researchers.

Three sites in the National Science Foundation-funded TeraGrid network are standing in for the telescope (Texas Advanced Computing Center), the base camp (San Diego Supercomputer Center), and the archiving center (NCSA). Data will be transferred from site to site and processed along the way in order to evaluate the design of the prototype data management system. This prototype integrates grid technologies with components developed by NCSA's partners at the LSST Corporation, the National Optical Astronomy Observatory (NOAO), the Stanford Linear Accelerator Center, and the University of Washington.

First, the challenge will test the data replication software, which is used to transfer data from site to site. Developed at NOAO, the Data Service (DS) software leverages SDSC's Storage Resource Broker (SRB) software. Then the basic functionality proposed for the data processing pipeline will be evaluated using prototype science codes and “resource consumers” that model how actual algorithms would consume compute cycles. These codes will be stitched together through middleware components developed by NCSA and its partners, to mimic the actions and applications that will be components of the final pipeline.
 
“The challenge mimics the data transport and processing as it will happen in real life once the telescope is operating,” says Cristina Beldica, project manager for NCSA's LSST effort. “What we're striving to do is get a big enough volume of data to show that our system will scale to the unprecedented data rates we'll see when the telescope is operational.”

This research is supported by the National Science Foundation.

The effort to build the LSST is overseen by the LSST Corporation. For more information, visit www.lsst.org.

—–

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Foldi[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This