Developing Data Solutions at NCSA

By Trish Barker

August 11, 2006

Sensors and instruments are the foot soldiers of science. They gather and generate the data that fuels investigation of phenomena ranging from the chemical reactions in rippling coastal waters to the energy rippling from quasars in deep space.

While the data provided by sensors and instruments are a boon, managing, processing, and storing the flood of data presents a challenge. NCSA is collaborating with the National Optical Astronomy Observatory (NOAO) to develop solutions for managing the tens to hundreds of gigabytes of data generated each night by its observatories. Using these solutions as first steps, the ultimate goal is to meet the needs of the Large Synoptic Survey Telescope (LSST); when LSST begins operation in 2013 it will generate an estimated 15 terabytes of raw data and more than 100 terabytes of processed data every night, 365 days a year. NCSA leads two of the three LSST data management teams and is responsible for managing the integrated work plans, tracking progress, reporting to the LSST Corporation, and coordinating a series of data challenges.

“Our NOAO/NCSA relationship provides very natural growth to LSST,” says Chris Smith, astronomer and manager of the Data Products Program at NOAO, the group in charge of developing and operating the NOAO data management system. “There are large datasets accumulating today, and really cutting-edge developments are being implemented and are benefiting scientists tomorrow rather than in 2013.”

Working closely with domain scientists is a hallmark of NCSA's approach to the development of cyberenvironments — which encompass and integrate distributed computing and data resources, scientific application codes, workflow tools, and user-friendly interfaces into end-to-end scientific processes. NOAO brings scientific depth to the collaboration, while NCSA brings both technological expertise and experience in supporting astronomy research.

“We can talk to each other very well, and we complement each other very well,” Smith says.

“The great thing about this partnership with NOAO is we have a living, breathing community to work with,” says Ray Plante, a senior research scientist at NCSA and the leader of the center's LSST effort.

A larger telescope, and more data

The Large Synoptic Survey Telescope project can be broken into three parts, each presenting challenges: the telescope, the camera, and the data management system.

The 3.2-gigapixel camera will be the largest ever built. The telescope itself must be both very large (with an 8-meter mirror) and provide a very wide field of view; most mirrors of that size are designed to have a small field of view. “It's a novel telescope design,” Smith says. The telescope's three heavy mirrors will need to be stringently aligned, “and of course you can't just do it in a fixed configuration,” Smith adds. “You have to move it and you have to move it fast” in order to survey the sky.

“It's challenging enough that they can't even develop the final design until they know what mountain it will go on, because the foundation under the telescope matters,” he says.

When the camera and telescope are completed and operational, LSST will image the entire viewable sky every three days. Its comprehensive, time-lapse imaging will provide an unprecedented census of the solar system, including transient objects like comets and potentially hazardous near-Earth asteroids. That prospect excites Smith, whose own research deals with supernovae, and other astronomers.

“This system will be a great driver for the discovery of unexpected things,” he says. “There's a lot of needles in the haystack that we haven't been able to find because the haystack isn't big enough.” More detailed observations expand the haystack of data that astronomers are searching.

LSST's repeated sweeps of the sky will also help to reduce noise, allowing astronomers to home in on fainter and fainter objects; by seeing farther and farther into the universe they are also seeing further and further into the past. “This is going to be very important in understanding the early universe,” Plante says.

And in perhaps its most mysterious challenge, LSST aims to provide crucial clues about the nature of “dark energy,” the enigma that is causing the expansion of the universe to accelerate.

In order to gain these insights, however, scientists must manage and analyze the incoming data. The 15 terabytes of raw images generated each night must be transmitted from the telescope and processed—generating a combined total of raw and processed data products that will top 100 terabytes each night. The data pipeline must also allow for quick, near real-time processing in order to provide feedback to the telescope to optimize imaging and to promptly alert the astronomy community about interesting observations, allowing researchers around the world to turn their telescopes toward the detected phenomena at the right time.

NCSA provides data archive

To lay the foundation for the LSST cyberenvironment, NCSA and NOAO are developing a prototype data pipeline using the vast stores of data generated by the ground-based observatories NOAO oversees: Kitt Peak in Arizona, Cerro Tololo Inter-American in Chile, and the Gemini Science Center, with observatories in Chile and Hawaii.

NCSA created a mirror of the NOAO data archive in Urbana. The archive replication system is built on the Storage Resource Broker (SRB) middleware developed at the San Diego Supercomputer Center (SDSC) and a transfer queuing system NCSA developed for its archive of data from the Berkeley-Illinois-Maryland Array (BIMA) radio telescope.

Mirroring NOAO's archive not only gives astronomers a high-bandwidth site from which to access data, it is also part of a strategy of security through redundancy, ensuring that data will survive at one site even if a catastrophic event hits another site. NCSA's robust mass storage system archives more than 2.3 petabytes of researchers' data, with data added at a rate of 40 to 60 terabytes each month.

Michelle Butler, the manager of NCSA's Storage Enabling Technologies group, says the data management expertise of the center's staff-encompassing experience with running large file systems, parallel file systems, many storage architecture types, HPC storage, and database storage — is as much of an asset as the storage infrastructure.

“NCSA storage is designed with a long-term view,” Plante says. “I can go back to data that's nearly as old as NCSA and have confidence that it will be there.”

Archiving the data at NCSA also will enable astronomers to take advantage of the center's 41 teraflops of high-performance computing power to process the data. Raw observatory data is marred by artifacts of the observing site, the weather conditions, and the instrument itself; it's as though each image is blurred by fingerprints that need to be wiped away so astronomers can get a sharp view of the data.

“We want to get a picture as if it were taken in space, so we have to take out the effects of the telescope and take out the effects of the atmosphere,” explains Plante.

Tools for accessing data

As challenging as the tasks of capturing, moving, processing, and storing data are, they are just the preliminary steps. The real excitement begins when astronomers can access and analyze the data.

For LSST, community access will be provided through a Web-based virtual observatory (VO). Therefore, NOAO and NCSA are working to develop the VO model and VO tools, including an authentication and authorization framework for the NOAO portal, an online tool that enables users to find, access, and analyze the data available through multiple public archives, such as the Sloan Digital Sky Survey, Canadian Network for Observational Cosmology, Chandra X-ray Observatory Center, and others.

“The NCSA/NOAO collaborative effort provides a backbone for secure data access, which is a vital component for astronomical portals and multi-location image archives,” says Chris Miller, an assistant astronomer at Cerro Tololo Inter-American Observatory and one of the collaborators on the NOAO portal project. “These security measures are currently missing from … most astronomical archive tools and services.”

By leveraging grid technologies — including the Globus Toolkit, NCSA's MyProxy, and PURSe (Portal-based User Registration System) — NCSA and developers from both Argonne National Laboratory and the National Virtual Observatory project have simplified the authentication and authorization process for users. When users log in, the portal knows which services and data they can access and which are withheld from them.

This prototype portal (http://nvo.noao.edu) was demonstrated in January at the American Astronomical Society Meeting in Washington, D.C. “Our demo included the ability for users to register and log on so that only they could see their proprietary data,” Miller explains. “The next version, scheduled to be complete by July, will have a fully implemented security model developed by NCSA in collaboration with the NOAO.”

The grid-based security framework will serve as an international standard for virtual observatory interoperability.

“The development of this security model is fully within the standards and procedures defined by the International Virtual Observatory Alliance,” Miller says. “Thus, led by Ray Plante and Ramon Williamson at NCSA, and in collaboration with the NOAO Data Products Program Team based in Chile, we are leading the nation in applying a standard user authentication and authorization model to astronomical portals, archives, and analysis services.”

Testing the prototype pipeline

In July 2006, the LSST project began its first Data Challenge, a test designed to evaluate the development of the data pipeline. The annual challenges will provide feedback for the team and will help the collaborators further refine the requirements of the LSST pipeline.

When the observatory begins operation in 2013, data will move from the telescope to a nearby base camp, where some limited data processing will take place in order to provide feedback to the telescope and rapid alerts to the astronomy community. From the base camp, raw data will be transmitted to archive centers for processing, storage, and dissemination to astronomy researchers.

Three sites in the National Science Foundation-funded TeraGrid network are standing in for the telescope (Texas Advanced Computing Center), the base camp (San Diego Supercomputer Center), and the archiving center (NCSA). Data will be transferred from site to site and processed along the way in order to evaluate the design of the prototype data management system. This prototype integrates grid technologies with components developed by NCSA's partners at the LSST Corporation, the National Optical Astronomy Observatory (NOAO), the Stanford Linear Accelerator Center, and the University of Washington.

First, the challenge will test the data replication software, which is used to transfer data from site to site. Developed at NOAO, the Data Service (DS) software leverages SDSC's Storage Resource Broker (SRB) software. Then the basic functionality proposed for the data processing pipeline will be evaluated using prototype science codes and “resource consumers” that model how actual algorithms would consume compute cycles. These codes will be stitched together through middleware components developed by NCSA and its partners, to mimic the actions and applications that will be components of the final pipeline.
 
“The challenge mimics the data transport and processing as it will happen in real life once the telescope is operating,” says Cristina Beldica, project manager for NCSA's LSST effort. “What we're striving to do is get a big enough volume of data to show that our system will scale to the unprecedented data rates we'll see when the telescope is operational.”

This research is supported by the National Science Foundation.

The effort to build the LSST is overseen by the LSST Corporation. For more information, visit www.lsst.org.

—–

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This