The Bus Stops Here

By Michael Feldman

August 11, 2006

With the next-generation AMD Rev F Opteron processors about to hit the streets next week, it might be a good time to take stock of the Opteron-Xeon competition. The new Intel dual-core Woodcrest chips — officially, the Xeon 5100 Series processors — are now being supported by most major and minor system OEM players. So what's been the overall impact? To be honest, it's too early to tell. The Woodcrest chips have only been available since June, although the OEMs were prepared for them months in advance of the official launch.

It is probably significant that none of the Tier 1 OEMs have really changed their x86 strategy very much since the beginning of the year. There's a certain amount of momentum built into server development. For example, Sun Microsystems has recently expanded their Opteron lineup, but they already had a substantial commitment to the AMD roadmap. IBM also announced new Opteron-based high performance systems just last week, but Big Blue has played on both sides of the x86 street for a few years now. Likewise, for HP. Dell recently added the Opteron to its four-socket server line, but the company is still essentially an Intel shop. So no Tier 1 came to the conclusion that the new Intel chip was an Opteron-killer. And none of them who were already invested in Xeon technology have forsaken the Intel x86 roadmap. That's to be expected. The big server makers tend to be a conservative bunch, waiting for the other guy to make a mistake.

But this reality hides the fact that the relationship between the two processors has changed. The new Woodcrest processor is vastly better than the previous generation Xeons and there are many indications that it has better performance on a wide variety of applications than the current generation of Opterons. Woodcrest, like all of Intel's new Core architecture microprocessors, uses a 65 nm process; AMD is not expected to move the Opterons to 65 nm until next year. Intel has made other low-level architectural improvements to increase performance and reduce power consumption. So overall, Intel has done an excellent job of addressing the performance and energy-efficiency gap with its latest Core architecture.

What Intel hasn't addressed is SMP scalability. Although both vendors are offering dual-core x86 chips today — and will soon have quad-core versions — the other dimension of computational scalability has to do with the ability to increase the number of processors on a board. AMD's HyperTransport (HT) bus technology allow Opterons to inhabit four-socket and eight-socket systems with relative ease. In the near future, 32-socket Opteron boxes will be possible.

The scalability of Opteron-based systems is one of the main reasons why companies, such as Cray, have made long-term commitments to the AMD roadmap. Cray will use Opteron chips in their supercomputer systems until at least 2010. Both Sun Microsystems and Fabric7 Systems are delivering eight-socket Opteron systems to compete with high performance, RISC processor-based machines (see the feature article in this issue describing the Fabric7 solution). Both of these latter companies seem intent on using AMD to go after the high-end server market.

One of the key pieces of technology in all this is AMD's coherent HyperTransport, which, unlike the standard HT, allows for processors to be connected to one another and maintain cache coherency. On the other hand, Intel's legacy front-side bus (FSB) technology limits the number of processors you can comfortably accommodate on a board. There are two-socket and four-socket Xeons today, but the speed of the FSB limits the interprocessor communication performance. In the world of high performance computers and enterprise servers, processor scalability is king. In fact, as soon as the application software catches up with multi-threading, it is likely to become quite important in workstations and PCs as well.

HyperTransport also provides a more flexible communication fabric across a board or even a chassis (in HyperTransport 3.0, chassis-to-chassis). And coherent HT allows system designers to connect all sorts of processors and I/O devices into the fabric. So while the Opteron's dominance in 64-bit processing has been essentially eliminated by the new Intel architecture, the advantages of HyperTransport over FSB remain.

Intel is thought to be developing its own advanced bus technology called CSI, which may or may not stand for Coherent Scalable Interconnect. Whatever it will be labeled, the rumor is that Intel will be offering a next-generation, processor-to-processor interconnect sometime in 2008. The only problem is that this technology appears to be targeted for the future quad-core Itanium processor (Tukwila), not any x86 Xeon products. It's possible the new bus will eventually migrate to the x86 line after it gets established on Itanium. But if Intel fails to provide an advanced processor bus for the Xeon chips, it is hard to envision how Intel's 64-bit x86 offerings will be able to follow AMD into higher end x86 SMP machines.

Perhaps Intel's strategy is just that — to position only the Itanium for the high-end of the SMP market, leaving Xeon for all lesser tasks (a huge market, by the way). If that's the case, at some point the x86 lines from the two companies will no longer compete directly with each other, at least in much of HPC and enterprise computing. But even this scenario leaves me wondering. Xeon is Intel's high-end x86 processor, so the chipmaker will have to upgrade Xeon's processor bus technology regardless of where it falls in the continuum of the enterprise and HPC markets. Also, I'm guessing Intel is still not convinced that the Itanium will be the 64-bit architecture that carries the day for HPC and mission-critical enterprise computing. The bottom line: Intel needs to ensure that its next generation processor bus is hosted on its most successful chip.

But Intel's fundamental problem is developing the bus technology that can compete against HyperTransport.  Not only does AMD have a three-year headstart on Intel, but HyperTransport presents a moving target as it continues to extend its performance and capabilities. This is not to suggest that Intel can't recover. The company has enormous resources and employs highly skilled engineers to keep its chips on the cutting edge. Their latest revamping of the Intel x86 architecture proves they have the potential to leapfrog AMD. Whether they can do so once again remains to be seen.  Until then, Intel will have to rely on the advantage it seems to have established in x86 processor performance to create some breathing room.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). On Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. Read more…

By Doug Black

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This