The Bus Stops Here

By Michael Feldman

August 11, 2006

With the next-generation AMD Rev F Opteron processors about to hit the streets next week, it might be a good time to take stock of the Opteron-Xeon competition. The new Intel dual-core Woodcrest chips — officially, the Xeon 5100 Series processors — are now being supported by most major and minor system OEM players. So what's been the overall impact? To be honest, it's too early to tell. The Woodcrest chips have only been available since June, although the OEMs were prepared for them months in advance of the official launch.

It is probably significant that none of the Tier 1 OEMs have really changed their x86 strategy very much since the beginning of the year. There's a certain amount of momentum built into server development. For example, Sun Microsystems has recently expanded their Opteron lineup, but they already had a substantial commitment to the AMD roadmap. IBM also announced new Opteron-based high performance systems just last week, but Big Blue has played on both sides of the x86 street for a few years now. Likewise, for HP. Dell recently added the Opteron to its four-socket server line, but the company is still essentially an Intel shop. So no Tier 1 came to the conclusion that the new Intel chip was an Opteron-killer. And none of them who were already invested in Xeon technology have forsaken the Intel x86 roadmap. That's to be expected. The big server makers tend to be a conservative bunch, waiting for the other guy to make a mistake.

But this reality hides the fact that the relationship between the two processors has changed. The new Woodcrest processor is vastly better than the previous generation Xeons and there are many indications that it has better performance on a wide variety of applications than the current generation of Opterons. Woodcrest, like all of Intel's new Core architecture microprocessors, uses a 65 nm process; AMD is not expected to move the Opterons to 65 nm until next year. Intel has made other low-level architectural improvements to increase performance and reduce power consumption. So overall, Intel has done an excellent job of addressing the performance and energy-efficiency gap with its latest Core architecture.

What Intel hasn't addressed is SMP scalability. Although both vendors are offering dual-core x86 chips today — and will soon have quad-core versions — the other dimension of computational scalability has to do with the ability to increase the number of processors on a board. AMD's HyperTransport (HT) bus technology allow Opterons to inhabit four-socket and eight-socket systems with relative ease. In the near future, 32-socket Opteron boxes will be possible.

The scalability of Opteron-based systems is one of the main reasons why companies, such as Cray, have made long-term commitments to the AMD roadmap. Cray will use Opteron chips in their supercomputer systems until at least 2010. Both Sun Microsystems and Fabric7 Systems are delivering eight-socket Opteron systems to compete with high performance, RISC processor-based machines (see the feature article in this issue describing the Fabric7 solution). Both of these latter companies seem intent on using AMD to go after the high-end server market.

One of the key pieces of technology in all this is AMD's coherent HyperTransport, which, unlike the standard HT, allows for processors to be connected to one another and maintain cache coherency. On the other hand, Intel's legacy front-side bus (FSB) technology limits the number of processors you can comfortably accommodate on a board. There are two-socket and four-socket Xeons today, but the speed of the FSB limits the interprocessor communication performance. In the world of high performance computers and enterprise servers, processor scalability is king. In fact, as soon as the application software catches up with multi-threading, it is likely to become quite important in workstations and PCs as well.

HyperTransport also provides a more flexible communication fabric across a board or even a chassis (in HyperTransport 3.0, chassis-to-chassis). And coherent HT allows system designers to connect all sorts of processors and I/O devices into the fabric. So while the Opteron's dominance in 64-bit processing has been essentially eliminated by the new Intel architecture, the advantages of HyperTransport over FSB remain.

Intel is thought to be developing its own advanced bus technology called CSI, which may or may not stand for Coherent Scalable Interconnect. Whatever it will be labeled, the rumor is that Intel will be offering a next-generation, processor-to-processor interconnect sometime in 2008. The only problem is that this technology appears to be targeted for the future quad-core Itanium processor (Tukwila), not any x86 Xeon products. It's possible the new bus will eventually migrate to the x86 line after it gets established on Itanium. But if Intel fails to provide an advanced processor bus for the Xeon chips, it is hard to envision how Intel's 64-bit x86 offerings will be able to follow AMD into higher end x86 SMP machines.

Perhaps Intel's strategy is just that — to position only the Itanium for the high-end of the SMP market, leaving Xeon for all lesser tasks (a huge market, by the way). If that's the case, at some point the x86 lines from the two companies will no longer compete directly with each other, at least in much of HPC and enterprise computing. But even this scenario leaves me wondering. Xeon is Intel's high-end x86 processor, so the chipmaker will have to upgrade Xeon's processor bus technology regardless of where it falls in the continuum of the enterprise and HPC markets. Also, I'm guessing Intel is still not convinced that the Itanium will be the 64-bit architecture that carries the day for HPC and mission-critical enterprise computing. The bottom line: Intel needs to ensure that its next generation processor bus is hosted on its most successful chip.

But Intel's fundamental problem is developing the bus technology that can compete against HyperTransport.  Not only does AMD have a three-year headstart on Intel, but HyperTransport presents a moving target as it continues to extend its performance and capabilities. This is not to suggest that Intel can't recover. The company has enormous resources and employs highly skilled engineers to keep its chips on the cutting edge. Their latest revamping of the Intel x86 architecture proves they have the potential to leapfrog AMD. Whether they can do so once again remains to be seen.  Until then, Intel will have to rely on the advantage it seems to have established in x86 processor performance to create some breathing room.

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire