IT as Fuel for the Innovation Engine

By By Ian Foster, Director, Computation Institute at ANL/University of Chicago; Univa Corp.

August 21, 2006

It has been claimed that “IT doesn't matter,” with the implication that IT is now so commoditized that it can no longer be a significant source of competitive advantage.

Conversations with senior executives across many Fortune 2000 companies lead me to disagree with this assessment. True, companies are concerned with controlling IT costs. However, I also find a growing recognition that competitiveness depends on a company's ability to innovate (Steve Jobs says simply: “Innovation distinguishes between a leader and a follower.”). I argue here that there are important strategic opportunities in improving enterprise IT infrastructure to accelerate innovation.

Others have written at length on the importance of innovation, so I will not revisit that topic here. Suffice it to say that in today's increasingly global, hyper-accelerated, and winner-take-all markets, a company's ability to deliver superior products and services before the competition can often make the difference between success and failure. Thus, the ability to innovate consistently and rapidly has emerged as a key differentiator. Successful companies are increasingly focusing attention on the process of innovation and on the empowerment of the knowledge worker — the innovator.

Such competitive pressures are particularly acute in industries where product design and development require the use of sophisticated IT for complex and computationally intensive simulation, design optimization and data analysis (e.g., aerospace and defense, semiconductors and electronics manufacturing, oil and gas, automotive, pharmaceuticals, entertainment and digital media, and financial services, etc.).

In these industries, the knowledge worker needs more than a workstation and an Internet connection; developing a new product or service requires the manipulation and management of large quantities of data, access to large-scale computing and, in many instances, extensive collaboration within distributed teams. The following scenario (based on a real example, but with details changed) introduces key themes:

Strong competitive pressures demand that BestWidget Inc. reduce the time to develop the next version of its best-selling product by half — while also improving quality, reducing manufacturing costs and ensuring adherence to environmental standards. Achieving this goal requires that the design team, spanning five locations across the globe, turn around design revisions four times faster — while also performing an order of magnitude more testing and verification to increase product quality.

While this task is not expressed as an IT challenge, its accomplishment founders on IT issues. Paradoxically, the chief difficulty was not a lack of needed IT capacity and services, but an absence of efficient delivery mechanisms. Dramatic IT improvements over the past decade had given designers their own computers, and each workgroup its own cluster and storage system. These developments had freed designers and workgroups from the limitations of the central mainframe. However, with increasing design complexity, these developments had also become significant barriers to innovation. The ability to manage one's own data had become the burden of managing one's own data (in another industry, chip designers can spend 25 percent of their time managing data!). Convenient access to local data had become inconvenient access to other data — when the data required to complete a design was located at a dozen sites worldwide. The power of a dedicated workstation had become the limited capacity of a single machine — when design goals required thousands of computers. The consequence is that BestWidget designers produced an inferior product, behind schedule and over budget. Not because they are bad designers — on the contrary — but because they just couldn't get access to the data, computing and other resources they needed to do their jobs.

These complaints are all symptoms of the “distributed computing hangover,” a situation where completely decentralized management makes it impractical to allocate resources in alignment with overall objectives. Such difficulties are becoming increasingly widespread and urgent as the importance of continuous, distributed and dynamic innovation grows. However, inherent in such difficulties is also an opportunity for IT to deliver significant competitive advantage.

The key is that knowledge workers should not have to wait for resources or have to adapt their work processes to the peculiarities of available resources. To this end, we must break down barriers that constrain both collaboration among team members and access by team members to needed resources. We must make it possible for innovators to pull needed computing, application and data resources into the innovation process, on a schedule that meets their needs. Furthermore, as multiple design teams are typically active, we must enable the innovative enterprise to balance competing demands for fixed resources, by expressing and enforcing policies that reflect the respective priorities of different design team activities.

In short, we must deliver to innovators:

  • What they need from the IT infrastructure (data, software, computing resources, licenses, etc.) to accomplish necessary tasks.
  • Where they need it (in terms of accessibility to the innovation team), regardless of the location of team members and required resources within or outside the enterprise.
  • When they need it, so the environment is matched to the lifecycle requirements of the innovation cycle.
  • Why they need it, meaning that innovation team activities are consistent with the overall business objectives of the enterprise.

If we think of the innovative enterprise as a high-performance automobile, then our goal in addressing what, where, when and why is to ensure that fuel (computing, data and other resources) is delivered to its engine (the innovators) when needed — not in a best-effort fashion, or after a multi-week manual provisioning process.

In this way, we can ensure that BestWidget designers can access and share data resources quickly, perform computations rapidly, and above all count on the availability of resources as they schedule their work. The company itself can create the highest quality products and services consistent with business priorities and objectives (and given available resources) across all competing tasks.

Enabling this agility requires new capabilities. It requires capacity planning mechanisms for matching supply and demand while taking into account constraints specified as business policies at each level of the infrastructure (ultimately, as in manufacturing supply chains, demand should drive resource planning and scheduling, within policy constraints, to deliver optimal service levels). It requires resource configuration, allocation and scheduling mechanisms to ensure that diverse and distributed assets throughout the enterprise are delivered as and when needed. It also requires monitoring and management mechanisms to track usage, to ensure that demands are met, and to diagnose and correct problems as they occur. Finally, these different mechanisms need to be integrated with enterprise IT infrastructure and tools.

No existing technology addresses all these needs. Product lifecycle management tools address information management requirements, but not the delivery of the computing environments needed to generate or process data. Cluster management tools and workflow tools address elements of workgroup operation and process, but not the larger questions of information delivery and computation scheduling across concurrent activities. Virtualization tools address the configuration of computational environments, but not other aspects of the physical IT infrastructure. Thus, enterprises are left attempting to support the innovation lifecycle by cobbling together disconnected proprietary tools in an ad hoc fashion. The result is non-standard, non-scalable, difficult-to-replicate and difficult-to-manage solutions with limited ability to respond to dynamic business conditions.

Where then should we look for solutions? I believe that Grid technologies have an important role to play. This claim should not be surprising. After all, members of the Grid community have been working for close to a decade on precisely the issues discussed here, with considerable success. For example, the LIGO astronomical observatory delivers 1TB of data a day to eight sites around the world, creating more than 120 million file replicas to date; the U.S. TeraGrid national infrastructure enables flexible, policy-driven access to computing and storage resources at eight science data centers; and the National Cancer Institute's Cancer Bioinformatics Grid provides access to data and services at 60 cancer centers. In each case, Grid technology (specifically, open source Globus software in these examples) is being used to accelerate the pace of innovation.

In the next year or two, I expect that we will see significant progress in the creation and application of IT infrastructures architected specifically to facilitate innovation, and a shift from thinking of IT solely as a cost center to recognizing IT as a value enabler. In the process, we will also see a significant change in how we think about the role of Grid technologies in creating robust, scalable, and adaptive enterprise IT infrastructures.

About Ian Foster

Dr. Ian Foster is associate director of the mathematics and computer science division of Argonne National Laboratory and the Arthur Holly Compton Professor of Computer Science at the University of Chicago. He created the Distributed Systems Lab at both institutions, which has pioneered key Grid concepts, developed Globus software, the most widely deployed Grid software, and led the development of successful Grid applications across the sciences. Foster is also the chief open source strategist and a board member of Univa.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire