‘Ballistic’ Transistor Aims for Terahertz Chips

By Nicole Hemsoth

August 25, 2006

Computer designers at the University of Rochester are going ballistic.

“Everyone has been trying to make better transistors by modifying current designs, but what we really need is the next paradigm,” says Quentin Diduck, a graduate student at the University who thought up the radical new design. “We've gone from the relay, to the tube, to semiconductor physics. Now we're taking the next step on the evolutionary track.”

That next step goes by the imposing name of “Ballistic Deflection Transistor,” and it's as far from traditional transistors as tubes. Instead of running electrons through a transistor as if they were a current of water, the ballistic design bounces individual electrons off deflectors as if playing a game of atomic billiards.

Though today's transistor design has many years of viability left, the amount of heat these transistors generate and the electrical “leaks” in their ultra-thin barriers have already begun to limit their speed. Research groups around the world are investigating strange new designs to generate ways of computing at speeds unthinkable with today's chips. Some of these groups are working on similar single-electron transistors, but these designs still compute by starting and stopping the flow of electrons just like conventional designs. But the Ballistic Deflection Transistor adds a new twist by bouncing the electrons into their chosen trajectories — using inertia to redirect for “free,” instead of wrestling the electrons into place with brute energy.

Such a chip would use very little power, create very little heat, be highly resistant to “noise” inherent in electronic systems, and should be easy to manufacture with current technologies. All that would make it incredibly fast. The National Science Foundation is so impressed with the idea that it just granted the University of Rochester team $1.1 million to develop a prototype.

“We've assembled a unique team to take on this chip,” says Marc Feldman, professor of computer engineering at the University. “In addition to myself and Quentin, we have a theoretical physicist, a circuit designer, and an expert in computer architecture. We're not just designing a new transistor, but a new archetype as well, and as far as I know, this is the first time an architect has been involved in the actual design of the transistor on which the entire architecture is built.”

The team has already had some luck in fabricating a prototype. The ballistic transistor is a nano-scale structure, and so all but impossible to engineer just a few years ago. Its very design means that this “large” prototype is already nearly as small as the best conventional transistor designs coming out of Silicon Valley today. Feldman and Diduck are confident that the design will readily scale to much smaller dimensions.

There's one hurdle the team isn't quite as confident about: “We're talking about a chip speed measured in terahertz, a thousand times faster than today's desktop transistors” Diduck says. “We have to figure out how to test it because there's no such thing as a terahertz oscilloscope!”

The Science Behind the Ballistics

The Ballistic Deflection Transistor (BDT) should produce far less heat and run far faster than standard transistors because it does not start and stop the flow of its electrons the way conventional designs do. It resembles a roadway intersection, except in the middle of the intersection sits a triangular block. From the “south” an electron is fired, as it approaches the crossroads, it passes through an electrical field that pushes the electron slightly east or west. When the electron reaches the middle of the intersection, it bounces off one side of the triangle block and is deflected straight along either the east or west roads. In this way, if the electron current travels along the east road, it may be counted as a zero, and as a one if it travels down the west road.

A traditional transistor registers a “one” as a collection of electrons on a capacitor, and a “zero” when those electrons are removed. Moving electrons on and off the capacitor is akin to filling and emptying a bucket of water. The drawback to this method is that it takes time to fill and empty that bucket. That refill time limits the speed of the transistor — the transistors in today's laptops run at perhaps two gigahertz, meaning two billion refills every second. A second drawback is that these transistors produce immense amounts of heat when that energy is emptied.

The BDT design should also be able to resist much of the electrical noise present in all electronic devices because the noise would only be present in the electrical “steering” field, and calculations show the variations of the noise would cancel themselves out as the electron passes through.

The BDT is “ballistic” because it is made from a sheet of semiconductor material called a “2D electron gas,” which allows the electrons to travel without hitting impurities, which would impede the transistor's performance.

The $1.1 million is an NSF Nanotechnology Integrated Research Team grant, which is only awarded to promising research. The team is comprised of Marc Feldman, professor of electrical and computer engineering, Martin Margala and Paul Ampadu, assistant professors of electrical and computer engineering, and Yonathan Shapir, professor of physics and astronomy.

To view an animation of the ballistic deflector transistor, download http://www.rochester.edu/news/photos/hi_res/BallisticTransistor/BallisticMovie.wmv.

—–

Source: University of Rochester

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This