Linux Clusters Target Oil & Gas Applications

By By S. Julio Friedmann

August 25, 2006

As an industry, hydrocarbon exploration and production operates in an increasingly challenging environment. The new challenges include more than high risk and high capital commitments, or declining fields and complex operations. Unconventional plays have become conventional, with fractured and/or tight porosity systems becoming commonplace. New environmental challenges require sophisticated and constrained operations. In this evolving regulatory, economic, and political environment, it is not enough to be creative, aggressive and technically adroit. One also wants to be smart.

The good news is that smart is a lot cheaper than it used to be. Specifically, high performance computers (HPCs) are a lot less expensive than they used to be, and a lot more powerful. The fastest computer in the world, Blue Gene/L, runs at nearly 300 teraflops, or 300 trillion floating point operations per second. The real revolution is that regular computer servers have become HPCs through parallel architectures, increasing industrial and market penetration.

A small cluster of Linux boxes — 32 regular servers — now outperforms the world's fastest computers from only a few years ago at 1/100th of the cost. They also are compact and easily serviced. A 128-cluster computer would take only three or four racks, easily fitting in a kitchen. These machines, the “big iron” of the world, have become readily available and powerful tools to tackle tough exploration, drilling and production problems.

Figure 1 shows the Thunder Linux cluster at Lawrence Livermore National Laboratory (LLNL). It is an 18-teraflop machine with more than 1,000 nodes and 4,000 central processing units, and ranks as the 11th fastest computer in the world. However, Thunder is about to be surpassed by an even faster and more powerful cluster system now being built for Lawrence Livermore. In late June, the Peloton supercomputing project was awarded to Appro for three 1U Quad XtremeServer clusters with a total of 16,128 cores based on next-generation AMD Opteron processors with DDR2 memory. To provide a production quality computing capacity, Peloton features a novel architecture that groups identical scalable units of 1,152 cores to form three shared-memory multiprocessor clusters.

Appro cluster

The Peloton clusters will be used in an unclassified environment as a multi-programmatic and institutional (M&IC) resource and in the classified environment to solve complex computational problems related to the National Nuclear Security Administration's (NNSA) Stockpile Stewardship Program. This program ensures the safety, security and reliability of the nation's nuclear deterrent.  Identical scalable units with 1,152 cores will be grouped together to form the three shared memory multiprocessor clusters. Multiple organizations and programs within LLNL will share these supercomputing clusters for large, medium and small scale scientific simulations.

With scalable computing power at affordable pricing points, it is not surprising that massively parallel computers are becoming more common in oil and gas companies and their allied service companies. They mostly operate in seismic processing, although they also tackle problems from financial modeling to molecular chemistry. And more and more companies are looking to HPCs to solve tough problems in reservoir characterization and management. The reasons are simple: improved recovery, reserves stewardship and cost reduction.

Like any tool, however, they must be pointed at the right problem and operated well. Despite the high power and low cost of high performance computers, any commercial oil and gas company must understand why it should buy a machine, what it could do with one, and how it would fit sensibly into its business model. It must also know how to deploy the techs and scientists hired to work these machines. This is where the challenges to conventional operations and approaches can inform smart business how to wield big iron to solve big problems and turn big profits.

Two areas come to the fore. First, how can one handle uncertainty in the subsurface and in geophysical interpretation? Second, how can one simulate reservoirs in the increasingly difficult operational environment to obtain extremely high recoveries?

The Realm Of Uncertainty

Workers in the subsurface know only one thing with certainty: They are wrong. No one knows what the rocks and fluids truly look like between wells. Common unknowns are saturations, lithologic distributions, fracture character and geometry, and large-scale connectivity. Even the very best geophysics and geological concepts still cannot shake the irreducible uncertainty in a single geological or reservoir model.

So why should a company limit itself to one? Or 10,000?

Stochastic integration and inversion are an approach that tackles this uncertainty head-on. Essentially, it generates thousands of forward models of some specific property, say, porosity, oil saturation or CO2 distribution, as examples. The inputs are trusted data such as well data, seismic constraints or production data, while the outputs are a handful of configurations that match all data, with a strict probabilistic ranking. This provides an operator with not one “best” model, but with several alternatives and their likelihoods. These models may vary in rock distribution, velocity or fluid properties in ways that are readily tested.

This gets then to the heart of many industrial problems: What information is needed to make large business decisions? Stochastic inversion can be applied to early seismic processing (exploration), post-discovery development planning, early production verification, history matching, and tertiary recovery planning — in short, every phase of the field life cycle.

In a tertiary recovery project in Wyoming, CO2 was injected and monitored using electrical resistance tomography (ERT) between abandoned wells. The initial, deterministic inversion looked noisy and unimpressive, and data collection ceased. Later, those same data served as the basis for a stochastic inversion. The likeliest solution still showed noise, but there were four other families of solutions, three of which showed a north-to-south trending plume and stimulation of a producing well.

To improve the analysis, another inversion was run with only one more piece of information: the volume of CO2 injected between ERT surveys. Suddenly, the highest probability looked like the north-to-south plume, and a secondary solution identified a possible anomaly around a water injector. One more difference map analysis revealed even higher confidence. The operators are looking at the field data to test the predictions of the inversion.

Figure 2 represents changes in resistivity among 19 abandoned wells after three weeks of injection over the 70-acre study area in the CO2 flood. The left image is the first difference map, showing mostly noise. The two middle maps show the two most likely solutions, noise and a CO2 plume. The right map shows the solution when only the total injection volume constraint was added.

For this case, no new data were collected after the first inversion. Instead, existing data and basic physics constrained the solution space very effectively. It also pointed toward ways to test the predictions of the model in production data and also suggested new analysis. Using this technique allows the operator to leverage off all relevant knowledge of the field and test interpretations that are subject to debate. It also helps inform operators of multiple scenarios and what new information may be needed to choose the most promising course of development. In fact, the less correlated the data sets (e.g., temperature, water cut, tiltmeter, crosswell seismic, etc.) the better the inversion.

Stochastic inversion and integration are superior to conventional inversion and analysis in every way, except one. They are very computationally intensive. A typical stochastic analysis generates thousands of possible solutions. For a stochastic analysis to converge may take hundreds or even thousands of CPU hours. On a conventional workstation, that many CPU hours would require weeks to months to complete.

But this is where HPCs come in. A 256-CPU, 64-node cluster could execute an analysis in hours, depending on the problem. Even including setup, parameterization, I/O and other concerns, a single HPC could tackle 30 to 100 problems a year. Although this may not be enough for every asset within a large company, it may help handle the most difficult cases, the highest-risk projects or the largest few assets within a company.

A World Without Scale Up

Currently, these large assets comprise large reservoirs managed by engineers using large reservoir simulations. In many cases, the workflow for these simulations has not changed in years: Build a geological concept from the data, build a detailed static geological model from those concepts, scale up to a full-flow reservoir model, and someday attempt a history match. Many of these steps imbed assumptions that cannot be verified, including relative permeability and scaling coefficients. The more of these assumptions introduced, the less unique the solutions for a given reservoir simulation.

One approach is to not make the assumptions. Instead, brute force can be used to run very large simulations where the best geological understanding is rendered in detail. Already, models run at higher resolution than in the past. In the case of managing the world's largest asset, the Ghawar Oil Field, Saudi Aramco runs its POWERS simulator on a massively parallel HPC. As of 2004, this 128-node Pentium IV-based machine had run full field simulations with between 10 million and 100 million cells and more than 4,000 wells, with larger runs pending. These simulations are run with multicomponent hydrocarbon models, waterflooding with varying brine chemistries, and dual-perm response to match fracture-flow history. Some runs include CO2 floods.

This capability not only allows Saudi Aramco to run fairly large models with minimal or no scale up, but also to execute history matches extremely rapidly (in some cases, in hours to days). Saudi Aramco has used this capability for infill drilling, water cut management, breakthrough prediction and other basic reservoir engineering choices (Figure 3). New data can then be incorporated into updated geological models that underpin the simulations.

Almost all such full-flow models run on conventional finite volume codes. These have proven to be reliable in most fields. There are exceptions, however. Even in simulations with multicomponent oils, methane, CO2, water and dual-permeability systems, the simulation of many important processes is crude or absent altogether. While that is fine for many conventional cases, some require greater sophistication. This is true of thermal recovery, where extreme temperature and viscosity transients matter. The handling of fracture systems is still poor, with simple continuum models of complex geometries with nonlinear stress/flow response. These models poorly predict dissolution or precipitation resulting from CO2 injection, or  bulk crustal deformation, or scale formation.

These require coupled, complex simulation tools called reactive transport models. Many research versions of these codes exist, including TOUGH2, NUFT, STOMP and others. Some are finite difference codes, some finite element, and some are coupled to discrete fracture and deformation codes. They have one commonality: They all require massively parallel machines to run sophisticated cases of 3-D stratigraphic and structural complexity of most hydrocarbon fields.

Again, for those fields where fractures dominate the flow field, or where chemistry is difficult, HPCs provide a way to target tough local questions that impact cost or operations. For unconventional reserves simulation, such as in-situ oil shale recovery, steam injection into thermal diatomite, or enhanced coalbed methane recovery, advanced simulators on massively parallel platforms provide the hope of tackling tough operational problems, such as reducing and mitigating well failure events, and substantially improving recovery factors.

Big Iron And The Future

Could these areas be combined and optimized? One can certainly imagine using some kind of stochastic integration to provide an initial reservoir field model, which is updated with in-field information and advanced simulations run on the fly. Sequential stochastic runs reduce cycle time, allowing for additional reservoir detail and physical and chemical processes to enter models as necessary.

In all cases, information is processed and mapped to optimize around changing parameters (production rate, maximum recovery, environmental integrity, etc.). Even this complex scenario could be managed by a fairly small HPC, perhaps 32 to 64 nodes, for a medium size field. While this scenario is not yet in operation, all the components exist and could be integrated quickly and easily. One can imagine how this workflow could lead to substantial improvements in total recovery and operating cost reduction.

As mentioned, HPC is not all things for all cases. It is best used for managing specific projects or assets of greatest risk or greatest value. Saudi Aramco chiefly built its computer and simulator to model Ghawar. Even if a company does not have an asset like Ghawar or Prudhoe Bay, it still will have ventures or operations that represent a major investment. HPC applications can help reduce the risk and improve the performance of these projects.

Increased competition helps. Competition between chip makers Intel and AMD has not only dropped prices, but also produced common architectures that can handle a wide range of realistic technical challenges. As such, the challenge to operators and researchers alike is one of fit. What is the real problem, and what is a smart approach to solve it?

This is likely to require some new thinking about the exploration, drilling and production workflow. Is it possible to jump past steps such as creating a complex static geomodel? What is the value of upscaling, and can it be avoided? How are operational data sets measured and tracked? Ultimately, the value of HPC applications is only how they affect the value chain to reduce the cost of operations or cycle time. Identifying the key technical choke points in the business and rethinking the technical workflow can help focus the big iron to produce something novel, sexy and powerful. Something useful.

And something smart.

—–

The author acknowledges Roger Aines, Steve Ashby, Bill Boas, Garfield Bowen, Ali Dogru and Abe Ramirez for discussions leading to this article. He also thanks Appro and Anadarko for supporting these technologies and research. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

Adapted and reprinted with permission from the July issue of The American Oil & Reporter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This