Feeding the Multi-Core Beast

By Michael Feldman

September 1, 2006

If there is anything that will slow down the multi-core juggernaut, it is the lack of software that will run on them. While commodity multi-core chips are well-know fixtures in servers and high performance computers, the highest volume markets, represented by the desktop and laptop segments, are just now getting used to the idea of dual-core processors. Within a relatively short period of time, multi-threaded software has become everyone's problem.

Intel has a huge stake in making sure future software follows the multi-core model. By the end of next year, the majority of processors shipped by the company will be either dual-core or quad-core. Commodity processors with eight cores and above are already being conceived. Intel can't afford to have all those extra CPUs just spinning with nothing to do. So part of the company's mission has become to convince software developers to “think parallel.”

The HPC community has recognized the problem for years. In 1999 during an OpenMP presentation at the Supercomputer Conference, one of the introductory slides stated: “The benefits are clear. To increase the amount of parallel software, we need to reduce the perceived difficulties.” Seven years later, the benefits of parallel programming and the perceived difficulties have been extended to the entire IT community.

But Intel is not going to rely on the HPC crowd to drive the paradigm shift of parallel computing into the larger IT community. Supercomputing, while important to Intel, is not perceived as a software technology driver by the company. Back in April, when I spoke with Justin Rattner, Intel's chief technology officer, he had this to say:

“A few years ago, when Intel asked me to look at what we should be doing in HPC, I was struck by how little progress had been made on the programming front. That's my big disappointment. The technologies that were popular a decade or more ago are still in widespread use today. We're still programming in MPI and still working on technologies like OpenMP. I had hoped and expected that after a decade or more we really would have made some fundamental advancements on the software side.

“I think that HPC probably won't drive the fundamental advancements in parallel programming. I think it had that opportunity, but that window of leadership is rapidly closing. The advent of multi-core processors in the high volume spaces is probably going to do more. It's certainly going to attract a lot more investment in creating powerful solutions to the programming problem — largely out of necessity. If these new architectures are going to be successful, a lot of people are going to have to program them and they're not going to be satisfied with the kinds of tools available in HPC today.”

Part of the effort to get developers used to the idea of parallel programming involves education. Earlier this month, Intel announced a worldwide effort to prepare university students for the new multi-core paradigm. Intel will provide expertise, funding, development tools, educational materials, on-site training and collaboration to 45 top universities to incorporate multi-core and multi-threading concepts into their computer science curricula. Related to this, the company has even developed its own software college (information online at http://or1cedar.cps.intel.com/softwarecollege/), a kind of global extension program for programmers.

Intel is also taking a more direct approach to encouraging parallel programming by delivering multi-threading developer tools, such as OpenMP-capable compilers, VTune, Thread Checker and Thread Profiler. This past Monday, Intel introduced a new software package, Threading Building Blocks (TBB), a threading library for C++ developers. I talked to James Reinders, Intel marketing director for the company's Developer Products Division, about the new software and wrote about it in this week's issue.

From what Reinders told me, Threading Building Blocks is targeted for the same types of systems as OpenMP, namely shared memory SMP systems. TBB's main advantage over OpenMP is that it doesn't require a special compiler, since it relies on standard C++ templates, rather than special language pragmas, to implement its parallel constructs. TBB also provides abstractions for task parallelism (being considered for OpenMP 3.0) and critical regions.

And, since the template library provides a more straightforward way to extend language features, it offers programmers more flexibility. The OpenMP pragma-driven model is certainly powerful, but compiler directives are a questionable way to make significant extensions to language functionality. On the other hand, OpenMP has other things going for it: It is an open standard, is portable across multiple languages (C, C++ and Fortran) and already enjoys some market penetration. The OpenMP language committee is in the process of designing version 3.0 of the specification. Read more about some of the issues being discussed in this week's feature article, “The Future of User-Directed SMP Parallel Programming.”

Intel already has an investment in OpenMP in its own compilers and has even produced a Cluster OpenMP version for distributed memory systems. The company designed the TBB library to coexist with OpenMP, as well as native threading code, within the same application. So rather than competing with OpenMP, Reinders characterized the TBB product as filling in some of the gaps.

What Intel would really like to accomplish is to wean developers away from native Windows and POSIX threading, a low-level approach to parallel programming that the company views as counter-productive. There's no reason to have thousands of developers devise their own thread management schemes. Not only is re-inventing the wheel time-consuming, it's also error prone. Reinders makes a good case that the sort of high-level threading model encapsulated in the TBB template library is the way to go. Says Reinders:

“We're really able to do some incredibly sophisticated things under the hood. And if you really want to get a scalable threaded application, you need to do these things. But I would not want to try to educate everyone how to write these; or even if I educated them, I wouldn't want to suggest that everyone should spend their time writing wonderful core threading capabilities like task queuing and stack management. Having them written for you and be part of the language is exactly the right thing to do.”

Lest you think he is just pushing the company line, here's what Reinders had to say in “Programming for Concurrency: New Tools Arrive” on the Dr. Dobbs Journal site:

“If you don't like what Intel has to offer, please find something else. But try to avoid writing the native threads. You'll waste time and you won't end up with a scalable application.”

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This