Feeding the Multi-Core Beast

By Michael Feldman

September 1, 2006

If there is anything that will slow down the multi-core juggernaut, it is the lack of software that will run on them. While commodity multi-core chips are well-know fixtures in servers and high performance computers, the highest volume markets, represented by the desktop and laptop segments, are just now getting used to the idea of dual-core processors. Within a relatively short period of time, multi-threaded software has become everyone's problem.

Intel has a huge stake in making sure future software follows the multi-core model. By the end of next year, the majority of processors shipped by the company will be either dual-core or quad-core. Commodity processors with eight cores and above are already being conceived. Intel can't afford to have all those extra CPUs just spinning with nothing to do. So part of the company's mission has become to convince software developers to “think parallel.”

The HPC community has recognized the problem for years. In 1999 during an OpenMP presentation at the Supercomputer Conference, one of the introductory slides stated: “The benefits are clear. To increase the amount of parallel software, we need to reduce the perceived difficulties.” Seven years later, the benefits of parallel programming and the perceived difficulties have been extended to the entire IT community.

But Intel is not going to rely on the HPC crowd to drive the paradigm shift of parallel computing into the larger IT community. Supercomputing, while important to Intel, is not perceived as a software technology driver by the company. Back in April, when I spoke with Justin Rattner, Intel's chief technology officer, he had this to say:

“A few years ago, when Intel asked me to look at what we should be doing in HPC, I was struck by how little progress had been made on the programming front. That's my big disappointment. The technologies that were popular a decade or more ago are still in widespread use today. We're still programming in MPI and still working on technologies like OpenMP. I had hoped and expected that after a decade or more we really would have made some fundamental advancements on the software side.

“I think that HPC probably won't drive the fundamental advancements in parallel programming. I think it had that opportunity, but that window of leadership is rapidly closing. The advent of multi-core processors in the high volume spaces is probably going to do more. It's certainly going to attract a lot more investment in creating powerful solutions to the programming problem — largely out of necessity. If these new architectures are going to be successful, a lot of people are going to have to program them and they're not going to be satisfied with the kinds of tools available in HPC today.”

Part of the effort to get developers used to the idea of parallel programming involves education. Earlier this month, Intel announced a worldwide effort to prepare university students for the new multi-core paradigm. Intel will provide expertise, funding, development tools, educational materials, on-site training and collaboration to 45 top universities to incorporate multi-core and multi-threading concepts into their computer science curricula. Related to this, the company has even developed its own software college (information online at http://or1cedar.cps.intel.com/softwarecollege/), a kind of global extension program for programmers.

Intel is also taking a more direct approach to encouraging parallel programming by delivering multi-threading developer tools, such as OpenMP-capable compilers, VTune, Thread Checker and Thread Profiler. This past Monday, Intel introduced a new software package, Threading Building Blocks (TBB), a threading library for C++ developers. I talked to James Reinders, Intel marketing director for the company's Developer Products Division, about the new software and wrote about it in this week's issue.

From what Reinders told me, Threading Building Blocks is targeted for the same types of systems as OpenMP, namely shared memory SMP systems. TBB's main advantage over OpenMP is that it doesn't require a special compiler, since it relies on standard C++ templates, rather than special language pragmas, to implement its parallel constructs. TBB also provides abstractions for task parallelism (being considered for OpenMP 3.0) and critical regions.

And, since the template library provides a more straightforward way to extend language features, it offers programmers more flexibility. The OpenMP pragma-driven model is certainly powerful, but compiler directives are a questionable way to make significant extensions to language functionality. On the other hand, OpenMP has other things going for it: It is an open standard, is portable across multiple languages (C, C++ and Fortran) and already enjoys some market penetration. The OpenMP language committee is in the process of designing version 3.0 of the specification. Read more about some of the issues being discussed in this week's feature article, “The Future of User-Directed SMP Parallel Programming.”

Intel already has an investment in OpenMP in its own compilers and has even produced a Cluster OpenMP version for distributed memory systems. The company designed the TBB library to coexist with OpenMP, as well as native threading code, within the same application. So rather than competing with OpenMP, Reinders characterized the TBB product as filling in some of the gaps.

What Intel would really like to accomplish is to wean developers away from native Windows and POSIX threading, a low-level approach to parallel programming that the company views as counter-productive. There's no reason to have thousands of developers devise their own thread management schemes. Not only is re-inventing the wheel time-consuming, it's also error prone. Reinders makes a good case that the sort of high-level threading model encapsulated in the TBB template library is the way to go. Says Reinders:

“We're really able to do some incredibly sophisticated things under the hood. And if you really want to get a scalable threaded application, you need to do these things. But I would not want to try to educate everyone how to write these; or even if I educated them, I wouldn't want to suggest that everyone should spend their time writing wonderful core threading capabilities like task queuing and stack management. Having them written for you and be part of the language is exactly the right thing to do.”

Lest you think he is just pushing the company line, here's what Reinders had to say in “Programming for Concurrency: New Tools Arrive” on the Dr. Dobbs Journal site:

“If you don't like what Intel has to offer, please find something else. But try to avoid writing the native threads. You'll waste time and you won't end up with a scalable application.”

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at editor@hpcwire.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This