Feeding the Multi-Core Beast

By Michael Feldman

September 1, 2006

If there is anything that will slow down the multi-core juggernaut, it is the lack of software that will run on them. While commodity multi-core chips are well-know fixtures in servers and high performance computers, the highest volume markets, represented by the desktop and laptop segments, are just now getting used to the idea of dual-core processors. Within a relatively short period of time, multi-threaded software has become everyone's problem.

Intel has a huge stake in making sure future software follows the multi-core model. By the end of next year, the majority of processors shipped by the company will be either dual-core or quad-core. Commodity processors with eight cores and above are already being conceived. Intel can't afford to have all those extra CPUs just spinning with nothing to do. So part of the company's mission has become to convince software developers to “think parallel.”

The HPC community has recognized the problem for years. In 1999 during an OpenMP presentation at the Supercomputer Conference, one of the introductory slides stated: “The benefits are clear. To increase the amount of parallel software, we need to reduce the perceived difficulties.” Seven years later, the benefits of parallel programming and the perceived difficulties have been extended to the entire IT community.

But Intel is not going to rely on the HPC crowd to drive the paradigm shift of parallel computing into the larger IT community. Supercomputing, while important to Intel, is not perceived as a software technology driver by the company. Back in April, when I spoke with Justin Rattner, Intel's chief technology officer, he had this to say:

“A few years ago, when Intel asked me to look at what we should be doing in HPC, I was struck by how little progress had been made on the programming front. That's my big disappointment. The technologies that were popular a decade or more ago are still in widespread use today. We're still programming in MPI and still working on technologies like OpenMP. I had hoped and expected that after a decade or more we really would have made some fundamental advancements on the software side.

“I think that HPC probably won't drive the fundamental advancements in parallel programming. I think it had that opportunity, but that window of leadership is rapidly closing. The advent of multi-core processors in the high volume spaces is probably going to do more. It's certainly going to attract a lot more investment in creating powerful solutions to the programming problem — largely out of necessity. If these new architectures are going to be successful, a lot of people are going to have to program them and they're not going to be satisfied with the kinds of tools available in HPC today.”

Part of the effort to get developers used to the idea of parallel programming involves education. Earlier this month, Intel announced a worldwide effort to prepare university students for the new multi-core paradigm. Intel will provide expertise, funding, development tools, educational materials, on-site training and collaboration to 45 top universities to incorporate multi-core and multi-threading concepts into their computer science curricula. Related to this, the company has even developed its own software college (information online at http://or1cedar.cps.intel.com/softwarecollege/), a kind of global extension program for programmers.

Intel is also taking a more direct approach to encouraging parallel programming by delivering multi-threading developer tools, such as OpenMP-capable compilers, VTune, Thread Checker and Thread Profiler. This past Monday, Intel introduced a new software package, Threading Building Blocks (TBB), a threading library for C++ developers. I talked to James Reinders, Intel marketing director for the company's Developer Products Division, about the new software and wrote about it in this week's issue.

From what Reinders told me, Threading Building Blocks is targeted for the same types of systems as OpenMP, namely shared memory SMP systems. TBB's main advantage over OpenMP is that it doesn't require a special compiler, since it relies on standard C++ templates, rather than special language pragmas, to implement its parallel constructs. TBB also provides abstractions for task parallelism (being considered for OpenMP 3.0) and critical regions.

And, since the template library provides a more straightforward way to extend language features, it offers programmers more flexibility. The OpenMP pragma-driven model is certainly powerful, but compiler directives are a questionable way to make significant extensions to language functionality. On the other hand, OpenMP has other things going for it: It is an open standard, is portable across multiple languages (C, C++ and Fortran) and already enjoys some market penetration. The OpenMP language committee is in the process of designing version 3.0 of the specification. Read more about some of the issues being discussed in this week's feature article, “The Future of User-Directed SMP Parallel Programming.”

Intel already has an investment in OpenMP in its own compilers and has even produced a Cluster OpenMP version for distributed memory systems. The company designed the TBB library to coexist with OpenMP, as well as native threading code, within the same application. So rather than competing with OpenMP, Reinders characterized the TBB product as filling in some of the gaps.

What Intel would really like to accomplish is to wean developers away from native Windows and POSIX threading, a low-level approach to parallel programming that the company views as counter-productive. There's no reason to have thousands of developers devise their own thread management schemes. Not only is re-inventing the wheel time-consuming, it's also error prone. Reinders makes a good case that the sort of high-level threading model encapsulated in the TBB template library is the way to go. Says Reinders:

“We're really able to do some incredibly sophisticated things under the hood. And if you really want to get a scalable threaded application, you need to do these things. But I would not want to try to educate everyone how to write these; or even if I educated them, I wouldn't want to suggest that everyone should spend their time writing wonderful core threading capabilities like task queuing and stack management. Having them written for you and be part of the language is exactly the right thing to do.”

Lest you think he is just pushing the company line, here's what Reinders had to say in “Programming for Concurrency: New Tools Arrive” on the Dr. Dobbs Journal site:

“If you don't like what Intel has to offer, please find something else. But try to avoid writing the native threads. You'll waste time and you won't end up with a scalable application.”

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire