Star Maker Machinery

By Tim Palucka

September 1, 2006

How are stars made? — no, not pop stars and movie stars, the other kind, the ones that bring light to cosmic darkness. Like people, the brilliant light points in space have a birth-to-death cycle, and their birth is a tempestuous, uncertain process.

A star comes into being when a region of cold gas in a galaxy collapses — like a basketball contracting to the size of a dot — until the core gets so dense that the atoms begin to fuse. Astrophysicists mark the onset of nuclear fusion — when the thermonuclear furnace at a star's core starts to heat up — as the moment of star birth.

Not all galactic regions of collapsing gas, however, result in newborn stars. One scenario sees the birth process as a kind of competition between energies. Swirling, turbulent gas as it collapses builds up tremendous pressure, which — as it becomes dense enough — sends a sound wave outward. If this outward pressure wave travels fast enough, it can stop the collapse. On the other hand, if the collapse happens faster than the pressure wave's ability to slow it, known as Jeans instability, nuclear fusion starts and voilá — a new star.

Underlying this simplified scenario, however, is a complex stew of physical processes, with many factors involved, including temperature of the gas, its chemical composition, its magnetization, and the rate at which the collapsing gas cools. Depending on how galaxy behavior is understood, scientists have proposed numerous theories of star birth and have long sought a clear explanation.

Why do we care how stars form? Simple, says Mordecai-Mark Mac Low, an astrophysicist at the American Museum of Natural History in New York. Without star birth, there wouldn't be life. “Ultimately our research tells us why we are here,” he says. “In our models of star formation, we're basically trying to figure out how the galaxy we live in and all the galaxies we see around us behave. And how does that behavior contribute to our own presence?”

In recent work, Mac Low and colleagues Yuexing Li of Columbia University (now at the Harvard-Smithsonian Center for Astrophysics) and Ralf S. Klessen of the Astrophysical Institute of Potsdam (now at the University of Heidelberg) used LeMieux, PSC's terascale system, to simulate billions of years of galactic evolution. Their results cut through the galactic fog and reduce a complex story to one key element.

“Gravitational instability,” says Mac Low, “appears to be the dominant mechanism controlling the formation of stars.”

Sink Particles

To get to this conclusion, Mac Low's team modeled the matter within galaxies as particles, using a method called “smoothed particle hydrodynamics.” They implemented this approach with simulation software, called GADGET, developed by Volker Springel at the Max Planck Institute for Astrophysics in Garching, Germany. Instead of overlaying a fixed grid and monitoring changes within each cube of the grid — a common approach to modeling movement of objects in space — GADGET scatters particles across the galaxy, with each particle assigned an initial density, pressure, and velocity. The simulations track these particles — their changes in position, density, pressure and velocity — through billions of simulation years.

“Instead of a regular grid where the resolution is fixed everywhere,” says Mac Low, “you have an unstructured grid, where the resolution follows the gas flow. This is good if you're looking at problems of collapse, because you put the most resolution in the densest regions.”

Along with this advantage, however, the particle method imposes a challenging computational problem. When collapse starts, the particles crowd closer and closer, in tighter and tighter orbits about each other. Maintaining high resolution in such a region requires more and more computation to advance the same amount of physical time, which eventually leads to an impasse — to advance a year of galactic time can require a year of computation.

The solution is to let collapse proceed until it's certain the collapsing region will achieve critical stellar density, then replace the thousands of gas particles in this region with a single absorbing particle of the same mass and velocity — called a “sink” particle because it acts as a sink, as opposed to a source, of mass. In that region, LeMieux now has to track only one particle, instead of thousands. By measuring the mass of a sink particle, scientists can quantify how much gas has collapsed to form a star cluster. “Effectively it becomes,” says Mac Low, “a star particle.”

Mac Low first worked with sink particles on a cluster computer at the American Museum of Natural History before he approached PSC for time on LeMieux. “You don't want to get on a high-performance machine,” he says, “until you know where you're going and what you want to accomplish. Once we started our million particle runs, to do it right we needed something like LeMieux.”

Their model galaxies comprise a disk of stars and uniform temperature (isothermal) gas surrounded by a spherical “halo” of dark matter; picture a globe filled with dark matter and a swirling disk of gas and stars at the equator. Through a series of about 20 simulations of single galaxies, over nearly two years starting with the AMNH cluster and then with LeMieux, they varied the number of gas particles from one to six million, and they varied other parameters — the fraction of gas, the size and rotation rate of the galaxies, effectively varying the strength of gravitational instability — and observed the effect on star birth.

Gravity Rules

The results show that star particles form more readily in regions that are more gravitationally unstable. In disk galaxies, gravitational instability is known as Toomre (pronounced Toom-ray) instability, for Alar Toomre, who first described it in 1964.

The Toomre gravitational instability parameter quantifies how sensitive a region of gas is to changes in local conditions. If additional gas is added to the region, or the strength of rotational shear changes, how likely is it that this will initiate collapse? Regions with an instability parameter above 1.0 are relatively stable and vice-versa.

Two factors bear on Toomre instability: pressure support and shear support. Pressure support involves a sound wave traveling outward through a collapsing region, as described earlier. If the gas collapses faster than the sound wave can stabilize it, the region becomes pressure unstable, meeting the Jeans instability criterion.

The other factor is shear support, which takes into account the “differential rotation” of material orbiting in a disk. Particles close to the center of the disk revolve faster than particles at the outer edges, just as in our Solar System where planets distant from the Sun travel more slowly along their orbit than planets close to the Sun. Because of differential rotation, gas on one side of a collapsing region can shear away from gas on the other side before collapse occurs, preventing star formation. For Toomre instability, the gas region must collapse fast enough so that (1) sound waves can't provide pressure support, and (2) shear doesn't tear the region apart before it collapses.

Mac Low's simulations with LeMieux show that sink particles form more readily in regions where the Toomre gravitational instability parameter is smaller. This is true regardless of changes in other variables — galaxy size, quantity of gas particles, rotation rate and gas fraction of the galactic disk. The simulations identify an exponential relationship between the rate of star birth and the Toomre instability parameter. Therefore, Mac Low concludes, Toomre instability alone is sufficient to explain star formation.

This conclusion departs from a number of previous theories. Some theorists believe that cooling is key — if you cool the gas in a galactic disk to a low enough temperature, star formation will inevitably occur. Others argue that magnetic support is crucial, with star formation occurring only in regions sufficiently neutral to decouple from the magnetic field.

Mac Low's results, however, strongly suggest that these ideas are due for rethinking. “I'm arguing,” he says, “that cooling is incidental. The first thing you do is start the collapse, and if you raise the densities high enough, the cooling will happen very quickly, more or less regardless of details. Similarly, if a massive enough region collapses, magnetic support can simply be overwhelmed.”

To follow-up on these findings, Mac Low and his colleagues plan to simulate galaxies at finer and finer resolution until they reach the resolution of an individual star. Currently, he and M. K. Ryan Joung of Columbia University are using 1,000 LeMieux processors to simulate a small fraction of a galaxy — to test whether supernovas act as galactic “stirrers” that stir and heat gas, impeding collapse.

Better knowledge of how a star is born, he says, helps us to comprehend “the grand history that ends up producing a kind of average star two-thirds of the way out in a larger-than-ordinary galaxy, a star that happens to have planets around it — one of which we live on.”

For more information, including graphics: http://www.psc.edu/science/2006/starmaker/starmaker.php

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The TianHe-2A will use a proprieta Read more…

By John Russell

SC17 Preview: Invited Talk Lineup Includes Gordon Bell, Paul Messina and Many Others

September 25, 2017

With the addition of esteemed supercomputing pioneer Gordon Bell to its invited talk lineup, SC17 now boasts a total of 12 invited talks on its agenda. As SC explains, "Invited Talks are a premier component of the SC Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Fo Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This