Star Maker Machinery

By Tim Palucka

September 1, 2006

How are stars made? — no, not pop stars and movie stars, the other kind, the ones that bring light to cosmic darkness. Like people, the brilliant light points in space have a birth-to-death cycle, and their birth is a tempestuous, uncertain process.

A star comes into being when a region of cold gas in a galaxy collapses — like a basketball contracting to the size of a dot — until the core gets so dense that the atoms begin to fuse. Astrophysicists mark the onset of nuclear fusion — when the thermonuclear furnace at a star's core starts to heat up — as the moment of star birth.

Not all galactic regions of collapsing gas, however, result in newborn stars. One scenario sees the birth process as a kind of competition between energies. Swirling, turbulent gas as it collapses builds up tremendous pressure, which — as it becomes dense enough — sends a sound wave outward. If this outward pressure wave travels fast enough, it can stop the collapse. On the other hand, if the collapse happens faster than the pressure wave's ability to slow it, known as Jeans instability, nuclear fusion starts and voilá — a new star.

Underlying this simplified scenario, however, is a complex stew of physical processes, with many factors involved, including temperature of the gas, its chemical composition, its magnetization, and the rate at which the collapsing gas cools. Depending on how galaxy behavior is understood, scientists have proposed numerous theories of star birth and have long sought a clear explanation.

Why do we care how stars form? Simple, says Mordecai-Mark Mac Low, an astrophysicist at the American Museum of Natural History in New York. Without star birth, there wouldn't be life. “Ultimately our research tells us why we are here,” he says. “In our models of star formation, we're basically trying to figure out how the galaxy we live in and all the galaxies we see around us behave. And how does that behavior contribute to our own presence?”

In recent work, Mac Low and colleagues Yuexing Li of Columbia University (now at the Harvard-Smithsonian Center for Astrophysics) and Ralf S. Klessen of the Astrophysical Institute of Potsdam (now at the University of Heidelberg) used LeMieux, PSC's terascale system, to simulate billions of years of galactic evolution. Their results cut through the galactic fog and reduce a complex story to one key element.

“Gravitational instability,” says Mac Low, “appears to be the dominant mechanism controlling the formation of stars.”

Sink Particles

To get to this conclusion, Mac Low's team modeled the matter within galaxies as particles, using a method called “smoothed particle hydrodynamics.” They implemented this approach with simulation software, called GADGET, developed by Volker Springel at the Max Planck Institute for Astrophysics in Garching, Germany. Instead of overlaying a fixed grid and monitoring changes within each cube of the grid — a common approach to modeling movement of objects in space — GADGET scatters particles across the galaxy, with each particle assigned an initial density, pressure, and velocity. The simulations track these particles — their changes in position, density, pressure and velocity — through billions of simulation years.

“Instead of a regular grid where the resolution is fixed everywhere,” says Mac Low, “you have an unstructured grid, where the resolution follows the gas flow. This is good if you're looking at problems of collapse, because you put the most resolution in the densest regions.”

Along with this advantage, however, the particle method imposes a challenging computational problem. When collapse starts, the particles crowd closer and closer, in tighter and tighter orbits about each other. Maintaining high resolution in such a region requires more and more computation to advance the same amount of physical time, which eventually leads to an impasse — to advance a year of galactic time can require a year of computation.

The solution is to let collapse proceed until it's certain the collapsing region will achieve critical stellar density, then replace the thousands of gas particles in this region with a single absorbing particle of the same mass and velocity — called a “sink” particle because it acts as a sink, as opposed to a source, of mass. In that region, LeMieux now has to track only one particle, instead of thousands. By measuring the mass of a sink particle, scientists can quantify how much gas has collapsed to form a star cluster. “Effectively it becomes,” says Mac Low, “a star particle.”

Mac Low first worked with sink particles on a cluster computer at the American Museum of Natural History before he approached PSC for time on LeMieux. “You don't want to get on a high-performance machine,” he says, “until you know where you're going and what you want to accomplish. Once we started our million particle runs, to do it right we needed something like LeMieux.”

Their model galaxies comprise a disk of stars and uniform temperature (isothermal) gas surrounded by a spherical “halo” of dark matter; picture a globe filled with dark matter and a swirling disk of gas and stars at the equator. Through a series of about 20 simulations of single galaxies, over nearly two years starting with the AMNH cluster and then with LeMieux, they varied the number of gas particles from one to six million, and they varied other parameters — the fraction of gas, the size and rotation rate of the galaxies, effectively varying the strength of gravitational instability — and observed the effect on star birth.

Gravity Rules

The results show that star particles form more readily in regions that are more gravitationally unstable. In disk galaxies, gravitational instability is known as Toomre (pronounced Toom-ray) instability, for Alar Toomre, who first described it in 1964.

The Toomre gravitational instability parameter quantifies how sensitive a region of gas is to changes in local conditions. If additional gas is added to the region, or the strength of rotational shear changes, how likely is it that this will initiate collapse? Regions with an instability parameter above 1.0 are relatively stable and vice-versa.

Two factors bear on Toomre instability: pressure support and shear support. Pressure support involves a sound wave traveling outward through a collapsing region, as described earlier. If the gas collapses faster than the sound wave can stabilize it, the region becomes pressure unstable, meeting the Jeans instability criterion.

The other factor is shear support, which takes into account the “differential rotation” of material orbiting in a disk. Particles close to the center of the disk revolve faster than particles at the outer edges, just as in our Solar System where planets distant from the Sun travel more slowly along their orbit than planets close to the Sun. Because of differential rotation, gas on one side of a collapsing region can shear away from gas on the other side before collapse occurs, preventing star formation. For Toomre instability, the gas region must collapse fast enough so that (1) sound waves can't provide pressure support, and (2) shear doesn't tear the region apart before it collapses.

Mac Low's simulations with LeMieux show that sink particles form more readily in regions where the Toomre gravitational instability parameter is smaller. This is true regardless of changes in other variables — galaxy size, quantity of gas particles, rotation rate and gas fraction of the galactic disk. The simulations identify an exponential relationship between the rate of star birth and the Toomre instability parameter. Therefore, Mac Low concludes, Toomre instability alone is sufficient to explain star formation.

This conclusion departs from a number of previous theories. Some theorists believe that cooling is key — if you cool the gas in a galactic disk to a low enough temperature, star formation will inevitably occur. Others argue that magnetic support is crucial, with star formation occurring only in regions sufficiently neutral to decouple from the magnetic field.

Mac Low's results, however, strongly suggest that these ideas are due for rethinking. “I'm arguing,” he says, “that cooling is incidental. The first thing you do is start the collapse, and if you raise the densities high enough, the cooling will happen very quickly, more or less regardless of details. Similarly, if a massive enough region collapses, magnetic support can simply be overwhelmed.”

To follow-up on these findings, Mac Low and his colleagues plan to simulate galaxies at finer and finer resolution until they reach the resolution of an individual star. Currently, he and M. K. Ryan Joung of Columbia University are using 1,000 LeMieux processors to simulate a small fraction of a galaxy — to test whether supernovas act as galactic “stirrers” that stir and heat gas, impeding collapse.

Better knowledge of how a star is born, he says, helps us to comprehend “the grand history that ends up producing a kind of average star two-thirds of the way out in a larger-than-ordinary galaxy, a star that happens to have planets around it — one of which we live on.”

For more information, including graphics: http://www.psc.edu/science/2006/starmaker/starmaker.php

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This