The Future of User-Directed SMP Parallel Programming

By Michael Wolfe

September 1, 2006

OpenMP (http://www.openmp.org) is an open standard for C, C++, and Fortran pragmas and directives to support portable shared-memory parallel programming. The current standard is OpenMP 2.5, which was defined by a language committee comprising users and vendors, and is available on many current high performance platforms.

The OpenMP language committee is now discussing many issues regarding features to include in the next version of the standard, OpenMP 3.0. This article summarizes the proposed extensions likely to be incorporated in 3.0, more extensive issues we are working to define for inclusion in 3.0, and other issues that for one reason or another are not being discussed or were explicitly deferred until some future revision of the OpenMP standard. The general goal of the OpenMP language committee is to complete the major work for the OpenMP 3.0 standard by Supercomputing 2006 in November, and prepare it for public comment shortly thereafter.

There are several straightforward issues that will improve both the ease-of-use and efficiency of OpenMP. There is broad agreement on these features, so it's really just a matter of defining them carefully and working them into the standard. Examples include:

Loop Collapse: the OpenMP 3.0 standard will likely include a way to generate parallel code for nested loops as efficiently as if they were a single loop. The proposal will probably look something like:

        #pragma omp parallel do collapse(2) shared(a,b,c) private(i,j)
        for( i = 0; i < n; ++i ){
            for( j = 0; j < m; ++j ){
               a[i][j] = b[i][j] + c[i][j];
            }
        }

with the restriction that the loops are tightly (perfectly) nested.  The iterations of the nested collapsed loops will be scheduled as one block of n*m (in this example) iterations among the parallel threads. An alternate proposal named the loop indices instead of giving the number of loops to collapse, but this failed because it would seem to allow parallelization of nonadjacent loops.

Stack Size Control: When OpenMP parallel threads are fired up, the stack for each thread is allocated from the heap. Each implementation has a different default size for this stack. If one of these stacks overflows, such as with deeply nested routines, the application will fail. The OpenMP 3.0 standard will likely include a way for the user to set the stack size, probably using an environment variable:

        export OMP_STACK_SIZE 64M

and to query the stack size with an API routine.

Idle Thread Control: Between parallel regions, the threads created for the parallel region are usually parked somewhere. Some implementations use a busy-wait scheme, so the latency of starting the next parallel region is as low as possible. Other implementations use a sleep facility, so the threads don't interfere with other work going on in the system. We will give the user some control over the idle behavior. One issue under discussion is whether to distinguish between fine grain waiting behavior, such as at a synchronization point within a parallel region, and coarse grain waiting, such as between parallel regions. The OpenMP 3.0 standard will likely have an environment variable, OMP_WAIT_POLICY, that a user can set with values such as BUSYWAIT, SLEEP, YIELD, to get the desired behavior, though the actual wording is yet to be defined.

Multiple Internal Control Variables: The OpenMP language standard defines several “internal control variables,” settings within the implementation, which can be set and/or queried by a program or user. These include parameters like how many threads to use in a parallel region, whether nested parallelism is enabled, the default loop scheduling policy, and so on; the idle thread policy discussed above would be added to this list. The standard doesn't define what happens when a program tries to reset the value of these variables within a parallel region. This might occur, for instance, when there is a call from within a parallel region to a subroutine library that has its own parallel regions. The OpenMP 3.0 standard will likely define that each thread gets its own copy of the internal control variables, and that each team created at a parallel region inherits the values from the master thread; querying and resetting the value of any of these will be well-defined wherever it occurs.

Private Variable Master Copy: When entering a parallel region with a private variable, the standard allows for the implementation to reuse the original variable storage for the master thread's private copy. This was a performance issue, but causes no end of misunderstandings for users. The OpenMP 3.0 standard will likely disallow the storage reuse, for many reasons, not the least of which is the behavior of C++ constructors and destructors, as well as the potential for memory leaks with C pointers and Fortran allocatables.

Unsigned int: OpenMP 2.5 allows 'int' types for parallel loop index variables. C and C++ also have 'unsigned' types, as well as 'long' and sometimes 'long long'. The OpenMP 3.0 standard will likely allow any supported integer datatype as a loop index.

Static schedule: The simplest loop schedule is the static schedule, defined such that the iterations are divided into chunks of approximately equal size, and each thread gets at most one chunk. Given four threads, the schedule for the following loop

        for( i = 0; i < 10; ++i ){
            dowork(i);
        }

could be 3/3/3/1 (three threads get 3 iterations, the last thread gets 1 iteration), 3/3/2/2, 4/4/2/0, or even 1/4/4/1. There was some discussion that allowing an implementation more freedom would let it align the chunks to cache line boundaries, avoiding false sharing between processors and improving performance, even though unbalanced. However, the OpenMP user community requested a more strict definition, to allow users to place the NOWAIT directive between loops, allowing early finishing threads to continue to the next loop. The static schedule will likely be defined such that only the first schedule listed above will be compliant in OpenMP 3.0.

In addition to these straightforward issues, there are a number of nontrivial issues the OpenMP language committee is working to address. Some of these are potentially very important to the future success of OpenMP, but they are difficult to define and in some cases may conflict with certain vendor-defined extensions to OpenMP. These are issues that the OpenMP language committee would like to include in OpenMP 3.0, but which require extensive work and discussion, which is ongoing. Examples include:

Task Queues: The Intel compiler has for some years had a task queue facility, whereby a program can define a block of work that can be enqueued on a queue of tasks and executed in parallel with other tasks. This is quite good for parallelism across linked list members, for example, or for a recursive traversal of a data structure. One proposal looks much like the following:

        #pragma omp taskqueue private(ptr) shared(head)
        {
            for( ptr = head; ptr; ptr = ptr->next ){
                #pragma omp task capture(ptr)
                { handle(ptr); }
            }
        }

There is quite a lot of active discussion about the details of this issue, such as when a thread that starts a task can enqueue more tasks, whether a thread that starts a task can pause and start a different task, whether a task that was paused can be picked up and continued by a different thread, whether a task that has created threads needs to wait at the end of the routine in case the subtasks refer to any local state of that routine. The real problem is the thread-centric execution model of OpenMP and a mismatch with a tasking model. This is possibly the biggest change that may be included in OpenMP 3.0, and arguably the most generally useful.

Constructors and Destructors: The standard is very lax in defining when C++ constructors and destructors are invoked for private variables. The OpenMP 3.0 standard may include a much more detailed definition.

Memory Model: There is a memory model in the OpenMP 2.5 specification, but it really needs to be carefully revised. There is general agreement that this should be included in the OpenMP 3.0 specification, but time constraints on the proposed release schedule for the standard may cause this to slip to a future revision.

Schedule Kinds: Loop schedules in OpenMP 2.5 are static (each thread gets fixed chunks of the same size), dynamic (also called self-scheduling in the literature), guided (guided self-scheduling in the literature), and runtime (let the user decide at runtime using an environment variable). As mentioned above, OpenMP 3.0 will likely include tightening up the definition of the static schedule. In addition, some new loop schedule types are under discussion:

  • Affinity scheduling, which the IBM compiler implements, and which prefers to keep similar chunks on the same threads across loops, hoping for cache locality.
  • Auto scheduling, which uses a runtime mechanism to re-balance the load between threads across multiple executions of the same loop.
  • Named schedules, which allow a user to reuse a schedule across multiple loops, again to control load balance or cache locality.
  • General block schedule, which allows a user to define how many iterations are allocated to each thread, as flexible as possible.

Fortran Allocatable, Assumed Shape: OpenMP 2.5 does not allow Fortran allocatables or assumed shape arrays in all places where it might make sense. This may be addressed in the OpenMP 3.0 standard.

Conclusion

Clearly there are a large number of issues the OpenMP language committee is actively working on for OpenMP 3.0 and many additional issues they are considering for future versions. OpenMP has been quite successful as a de facto SMP parallel programming standard since the first revision of the standard was released in 1997. Almost every major compiler supplier supports OpenMP, and a large number of ISV and proprietary applications have been parallelized for shared-memory systems using OpenMP, including many mainstream technical applications in MCAE, CFD, computational chemistry, and geophysical processing.

A significant part of the appeal of OpenMP is its incremental nature, which allows developers to parallelize small portions of an application. However, OpenMP is also designed to enable entire applications to be parallelized in a comprehensive way. For this reason, I expect OpenMP will continue to be appealing to an ever broadening set of developers looking to parallelize applications for today's multi-core processors.

—–

Dr. Wolfe has 30 years professional compiler experience in both academia and industry, and has been with The Portland Group (PGI) for the past ten years. He has many publications, including two books, on high performance and parallel compiler optimizations and serves as PGI's representative on the OpenMP Architecture Review Board.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This