The Future of User-Directed SMP Parallel Programming

By Michael Wolfe

September 1, 2006

OpenMP (http://www.openmp.org) is an open standard for C, C++, and Fortran pragmas and directives to support portable shared-memory parallel programming. The current standard is OpenMP 2.5, which was defined by a language committee comprising users and vendors, and is available on many current high performance platforms.

The OpenMP language committee is now discussing many issues regarding features to include in the next version of the standard, OpenMP 3.0. This article summarizes the proposed extensions likely to be incorporated in 3.0, more extensive issues we are working to define for inclusion in 3.0, and other issues that for one reason or another are not being discussed or were explicitly deferred until some future revision of the OpenMP standard. The general goal of the OpenMP language committee is to complete the major work for the OpenMP 3.0 standard by Supercomputing 2006 in November, and prepare it for public comment shortly thereafter.

There are several straightforward issues that will improve both the ease-of-use and efficiency of OpenMP. There is broad agreement on these features, so it's really just a matter of defining them carefully and working them into the standard. Examples include:

Loop Collapse: the OpenMP 3.0 standard will likely include a way to generate parallel code for nested loops as efficiently as if they were a single loop. The proposal will probably look something like:

        #pragma omp parallel do collapse(2) shared(a,b,c) private(i,j)
        for( i = 0; i < n; ++i ){
            for( j = 0; j < m; ++j ){
               a[i][j] = b[i][j] + c[i][j];
            }
        }

with the restriction that the loops are tightly (perfectly) nested.  The iterations of the nested collapsed loops will be scheduled as one block of n*m (in this example) iterations among the parallel threads. An alternate proposal named the loop indices instead of giving the number of loops to collapse, but this failed because it would seem to allow parallelization of nonadjacent loops.

Stack Size Control: When OpenMP parallel threads are fired up, the stack for each thread is allocated from the heap. Each implementation has a different default size for this stack. If one of these stacks overflows, such as with deeply nested routines, the application will fail. The OpenMP 3.0 standard will likely include a way for the user to set the stack size, probably using an environment variable:

        export OMP_STACK_SIZE 64M

and to query the stack size with an API routine.

Idle Thread Control: Between parallel regions, the threads created for the parallel region are usually parked somewhere. Some implementations use a busy-wait scheme, so the latency of starting the next parallel region is as low as possible. Other implementations use a sleep facility, so the threads don't interfere with other work going on in the system. We will give the user some control over the idle behavior. One issue under discussion is whether to distinguish between fine grain waiting behavior, such as at a synchronization point within a parallel region, and coarse grain waiting, such as between parallel regions. The OpenMP 3.0 standard will likely have an environment variable, OMP_WAIT_POLICY, that a user can set with values such as BUSYWAIT, SLEEP, YIELD, to get the desired behavior, though the actual wording is yet to be defined.

Multiple Internal Control Variables: The OpenMP language standard defines several “internal control variables,” settings within the implementation, which can be set and/or queried by a program or user. These include parameters like how many threads to use in a parallel region, whether nested parallelism is enabled, the default loop scheduling policy, and so on; the idle thread policy discussed above would be added to this list. The standard doesn't define what happens when a program tries to reset the value of these variables within a parallel region. This might occur, for instance, when there is a call from within a parallel region to a subroutine library that has its own parallel regions. The OpenMP 3.0 standard will likely define that each thread gets its own copy of the internal control variables, and that each team created at a parallel region inherits the values from the master thread; querying and resetting the value of any of these will be well-defined wherever it occurs.

Private Variable Master Copy: When entering a parallel region with a private variable, the standard allows for the implementation to reuse the original variable storage for the master thread's private copy. This was a performance issue, but causes no end of misunderstandings for users. The OpenMP 3.0 standard will likely disallow the storage reuse, for many reasons, not the least of which is the behavior of C++ constructors and destructors, as well as the potential for memory leaks with C pointers and Fortran allocatables.

Unsigned int: OpenMP 2.5 allows 'int' types for parallel loop index variables. C and C++ also have 'unsigned' types, as well as 'long' and sometimes 'long long'. The OpenMP 3.0 standard will likely allow any supported integer datatype as a loop index.

Static schedule: The simplest loop schedule is the static schedule, defined such that the iterations are divided into chunks of approximately equal size, and each thread gets at most one chunk. Given four threads, the schedule for the following loop

        for( i = 0; i < 10; ++i ){
            dowork(i);
        }

could be 3/3/3/1 (three threads get 3 iterations, the last thread gets 1 iteration), 3/3/2/2, 4/4/2/0, or even 1/4/4/1. There was some discussion that allowing an implementation more freedom would let it align the chunks to cache line boundaries, avoiding false sharing between processors and improving performance, even though unbalanced. However, the OpenMP user community requested a more strict definition, to allow users to place the NOWAIT directive between loops, allowing early finishing threads to continue to the next loop. The static schedule will likely be defined such that only the first schedule listed above will be compliant in OpenMP 3.0.

In addition to these straightforward issues, there are a number of nontrivial issues the OpenMP language committee is working to address. Some of these are potentially very important to the future success of OpenMP, but they are difficult to define and in some cases may conflict with certain vendor-defined extensions to OpenMP. These are issues that the OpenMP language committee would like to include in OpenMP 3.0, but which require extensive work and discussion, which is ongoing. Examples include:

Task Queues: The Intel compiler has for some years had a task queue facility, whereby a program can define a block of work that can be enqueued on a queue of tasks and executed in parallel with other tasks. This is quite good for parallelism across linked list members, for example, or for a recursive traversal of a data structure. One proposal looks much like the following:

        #pragma omp taskqueue private(ptr) shared(head)
        {
            for( ptr = head; ptr; ptr = ptr->next ){
                #pragma omp task capture(ptr)
                { handle(ptr); }
            }
        }

There is quite a lot of active discussion about the details of this issue, such as when a thread that starts a task can enqueue more tasks, whether a thread that starts a task can pause and start a different task, whether a task that was paused can be picked up and continued by a different thread, whether a task that has created threads needs to wait at the end of the routine in case the subtasks refer to any local state of that routine. The real problem is the thread-centric execution model of OpenMP and a mismatch with a tasking model. This is possibly the biggest change that may be included in OpenMP 3.0, and arguably the most generally useful.

Constructors and Destructors: The standard is very lax in defining when C++ constructors and destructors are invoked for private variables. The OpenMP 3.0 standard may include a much more detailed definition.

Memory Model: There is a memory model in the OpenMP 2.5 specification, but it really needs to be carefully revised. There is general agreement that this should be included in the OpenMP 3.0 specification, but time constraints on the proposed release schedule for the standard may cause this to slip to a future revision.

Schedule Kinds: Loop schedules in OpenMP 2.5 are static (each thread gets fixed chunks of the same size), dynamic (also called self-scheduling in the literature), guided (guided self-scheduling in the literature), and runtime (let the user decide at runtime using an environment variable). As mentioned above, OpenMP 3.0 will likely include tightening up the definition of the static schedule. In addition, some new loop schedule types are under discussion:

  • Affinity scheduling, which the IBM compiler implements, and which prefers to keep similar chunks on the same threads across loops, hoping for cache locality.
  • Auto scheduling, which uses a runtime mechanism to re-balance the load between threads across multiple executions of the same loop.
  • Named schedules, which allow a user to reuse a schedule across multiple loops, again to control load balance or cache locality.
  • General block schedule, which allows a user to define how many iterations are allocated to each thread, as flexible as possible.

Fortran Allocatable, Assumed Shape: OpenMP 2.5 does not allow Fortran allocatables or assumed shape arrays in all places where it might make sense. This may be addressed in the OpenMP 3.0 standard.

Conclusion

Clearly there are a large number of issues the OpenMP language committee is actively working on for OpenMP 3.0 and many additional issues they are considering for future versions. OpenMP has been quite successful as a de facto SMP parallel programming standard since the first revision of the standard was released in 1997. Almost every major compiler supplier supports OpenMP, and a large number of ISV and proprietary applications have been parallelized for shared-memory systems using OpenMP, including many mainstream technical applications in MCAE, CFD, computational chemistry, and geophysical processing.

A significant part of the appeal of OpenMP is its incremental nature, which allows developers to parallelize small portions of an application. However, OpenMP is also designed to enable entire applications to be parallelized in a comprehensive way. For this reason, I expect OpenMP will continue to be appealing to an ever broadening set of developers looking to parallelize applications for today's multi-core processors.

—–

Dr. Wolfe has 30 years professional compiler experience in both academia and industry, and has been with The Portland Group (PGI) for the past ten years. He has many publications, including two books, on high performance and parallel compiler optimizations and serves as PGI's representative on the OpenMP Architecture Review Board.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This