Rackable Eases Power Struggle in the Data Center

By Michael Feldman

September 8, 2006

Founded in 1999, Rackable Systems has been one of the fastest growing x86 server makers over the last four years. It now stands as the 4th largest x86 servers vendor in the U.S. (ahead of Sun Microsystems) and 8th globally. With just over $20 million in revenue in 2002, this year Rackable expects to reach over $300 million. Its customers, including Yahoo, Amazon and Microsoft, represent some of the largest scale-out deployments of capacity cluster infrastructure in the industry.

The secret to its success? Rackable does some of the same things that a lot of other tier two x86 server vendors do. It offers industry-standard hardware from multiple vendors at competitive prices, allows for lots of customization, and is willing to go after both large and small accounts.

But Rackable provides a couple of features that differentiate its offerings from run-of-the-mill server vendors. The company has designed a half-depth form factor arranged in a “back-to-back” rack-mounted configuration, which results in much denser footprint than a standard server rack. The company also offers DC power options that it claims can provide an energy savings of 10 to 30 percent. Together, these features enable Rackable servers to inhabit some challenging data center environments.

The half-depth back-to-back rack mounting, besides creating a smaller footprint, produces a couple of other advantages. One is that all the I/O and network cabling ends up in the front of the cabinet, where it's easier to access and service. No more scrambling to the back of the cabinet to figure out which cables are connected to which servers. The front-side cabling also leaves space for an air plenum in the middle of the cabinet (at the back of each half-depth unit), which provides for efficient ventilation. Rackable had the foresight to patent the back-to-back rack design and, according to the company, has already invoked its protection against at least one would-be imitator.

The inconvenient side of compute density is the increased need for power and cooling. But Rackable offers a solution for that too. Instead of relying on individual power supplies in the servers to convert the AC power to DC power, the company claims it makes more sense to do the conversion outside of the machines and feed them directly with DC. Rackable's most popular way of doing this is by using a AC-to-DC rectifier for each cabinet. The rectifier sits on top of the rack and distributes DC power to all the servers beneath it. Each server contains a DC card instead of a whole power supply, removing a major source of heat from the machine.

Energy savings can add up quickly. For a cabinet-level AC-to-DC rectifier solution, the company claims that a 10 percent reduction in energy requirements is fairly conservative. If your data center houses a large server farm, cost savings could reach hundreds of thousands of dollars per year.

Also, by replacing all the power supplies with DC cards, reliability improves substantially. AC power supplies are notoriously unreliable — thus the presence of redundant power supplies for mission-critical systems. The DC cards themselves have much higher MTBF ratings, while redundancy at the rectifier level can be used to cope with an AC power failure in the facility. And by removing the heat load of the AC power supply from the server box, the longevity of the other system components can be extended.

Rackable offers vanilla AC-powered servers as well, but interest in their DC solution has been growing. In the second quarter of 2006, the company reported that about half of all units sold used the DC-powered solution. And it's not just the large deployments; smaller installations like the University of Florida's High Performance Computing Center have selected DC-based Rackable systems for their cluster computing needs.

Cool Cluster for Florida

The HPC Initiative at the University of Florida is on an aggressive schedule to expand its computing resources every 12 to 18 months. In 2005 they were looking to double or triple the performance of their legacy Xeon cluster, but realized their cramped machine room was going to be a problem.

“The existing cluster occupied about nine racks in the machine room” said Charles Taylor, senior HPC systems engineer at the University of Florida. “The size of the new cluster that we were looking at would have been about 18 to 22 racks. And as we looked at this, we realized that we didn't have the room and the capacity in our machine room to do this.”

An engineering estimate of about $350 thousand to renovate the machine room was just the beginning. A one-time $2375 (per ton of cooling) impact fee would be charged by the physical plant at the University of Florida to deliver additional chilled water. Since they were looking at around 40 tons of additional cooling, this worked out to about $100 thousand. So the HPC group was looking to spend close to half a million dollars just to get the facility upgraded.

The search was on to find a better solution. Almost immediately they realized that if they switched to dual-core Opterons, they would be able to reduce their power requirements by half. For three extra watts per processor, they could get a second core — essentially free. So they started looking at the vendors offering Opteron-based servers.

Rackable System quickly rose to the top of the list. Its emphasis on low power systems with small footprints seemed like a perfect fit for the university's needs. Taylor said no one could match Rackable for a standard rack configuration. They investigated blade servers from a couple of tier one vendors, but these were priced at a premier level. And even the blade systems they were looking at couldn't match Rackable's server density.

“Their half depth servers and their racks, which are front and back loaded, allowed us to put twice as many nodes in a rack than HP, IBM or Sun,” said Taylor. “And when you include the fact that we were going to two cores per processor, we just cut our space requirement by a factor of four. So we realized that we could probably fit our new cluster into our existing space — which was really remarkable to us.”

Taylor said by avoiding the renovation of the machine room, they probably saved nine or ten months — not to mention the hundreds of thousand of dollars they would have needed to upgrade the facility. Rackable swapped out the university's original cluster, giving them a pretty good deal in the process. The new 200 node (4-way dual processor, dual-core) cluster fit in six racks, using eighteen tons of cooling, including storage. This represented only three tons more cooling than the original Xeon cluster. And they achieved their goal of approximately a 300 percent performance increase.

No AC Power, No Problem

Data393, a company that provides colocation services and managed Web hosting, had a slightly different dilemma. It was trying to figure out how it could expand its server infrastructure as the company's managed hosting business grew. Complicating the situation was the fact Data393 had inherited a DC-powered facility from a defunct telecommunication provider. While DC power is often used for networking infrastructure, in general it represents an unfriendly environment for most data center hardware.

Not so for Rackable. Besides being able to offer a cabinet-level DC power solution, the company can also deal with entire data centers powered with DC. In fact, Rackable is able to take advantage of a facility-wide DC power supply to an even greater degree than a normal AC powered data center since they can skip the power conversion step at each rack. In this type of set-up, Rackable claims users can achieve a 30 percent power savings.

Like the University of Florida, Data393 was looking to expand its server capacity within limited space and power constraints. But they also needed servers that could feed directly from DC.

“There were other providers that had DC-capable servers, but not necessarily with highly dense footprints,” said Steve Merkel, senior engineer at Data393. “Some of the blade environments did have DC options, but they were closed form factor solutions. We could find little bits and pieces of what we wanted, but to wrap everything into a single package, the only one we came across at the time was Rackable Systems.”

Data393 engineers were able to specify motherboards, hard drives, network adapters and RAID controllers, but were still able to get the high-density footprint. They acquired 4 cabinets (about 400 servers) from Rackable. By going with a DC powered solution, they were able to significantly reduce their cooling costs and increase reliability.

“Given that we rectify in a separate room, a large chunk of our heat load is generated outside of the data center,” said Merkel. “We have noticed a decrease in thermal output by those servers, so consequently we've reduced costs from a cooling standpoint so we can increase density within the same infrastructure.”

DC For the Masses?

So why doesn't everyone use DC power in the data center? For some of the same reasons it's not used in general power distribution — namely, it is not very practical to distribute direct current over long distance. Even at the scale of a data center, there are some significant barriers. Once you get past the additional cost of installing the DC power plant, deploying DC across a data center can be problematic. Direct current requires thick copper bus bars that must be built and maintained correctly for safe service. All this extra cost for the specialized infrastructure becomes a hindrance to widespread DC adoption.

At the level of the rack or cabinet, the objections to DC power are somewhat different. Many server makers have denigrated Rackable's solution as just a “gimmick.” They say the energy efficiency gains are an illusion; the conversion from AC to DC just gets moved outside the server. Rackable maintains its cabinet-level DC rectifier solution is significantly more efficient that even the best AC power supplies.

Some of the major server OEMs such as HP, IBM and Sun offer their own DC-capable systems, but they're mainly targeted for DC powered facilities, where direct AC is unavailable. With the exception of Rackable, no server maker provides DC capability as a general-purpose solution. Why is that?

“First of all it's a very difficult technology to build,” said Colette LaForce, vice president of Marketing at Rackable Systems. “We launched it in 2003 but it certainly took a lot of engineering and ingenuity to get it to where it is. I think that for a lot of large x86 server manufacturers this would be like turning the giant ship in another direction. The advantage when you are a younger, more nimble organization is that you can do that. So I think one of the key barriers to entry is that it's just very difficult; this doesn't get solved overnight.”

The company has filed for patents around some of their DC technology. So if other OEMs decide to go this route, they're going to have to develop their own solutions. Until then, Rackable seems to have cornered the market for DC friendly servers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Help HPC Work Smarter and Accelerate Time to Insight

 

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19]

To recklessly misquote Jane Austen, it is a truth, universally acknowledged, that a company in possession of a highly complex problem must be in want of a massive technical computing cluster. Read more…

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This