Computational Biology: Challenges and Opportunities

By Tiffany Trader

September 22, 2006

The current issue of the quarterly publication, CTWatch, focuses on the issues and challenges facing the field of computational biology today and in the future. A recurring theme throughout all of the articles is that the field of biology is becoming increasingly data driven and is producing data faster than computers can process it. The authors address the limitations of our current cyberinfrastructure and suggest strategies to overcome these challenges.

In his introduction, “Trends in Cyberinfrastructure for Bioinformatics and Computational Biology,” Rick Stevens, Associate Laboratory Director, Computing and Life Sciences of Argonne National Laboratory and Professor, Computer Science Department of The University of Chicago, outlines three major trends in biology research: the increasing availability of high-throughput data, the acceleration of the pace of questions whose answers rely on increasing computation resources, and simulation and modeling technologies that will eventually lead to predictive biological theory.

Stevens addresses the role of petascale computing with regard to fundamental biological problems, such as the evolutionary history of genes and genomes. This is significant, as the number of completed genome sequences will reach 1,000 in the next few years. He provides a list of multiple “problem areas” and their estimated time to completion at three levels of computing power (360, 1000, and 5000 teraflops). For example, on the IBM Blue Gene/L, screening “all known microbial drug targets against the public and private databases of chemical compounds to identify potential new inhibitors and potential drugs,” would take one year for all microbial targets at 360 teraflops, a one month for all microbial targets at 1000 teraflops, and one machine year for all known human drug targets at 5000 teraflops.

Eric Jakobsson of the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign discusses the initiatives that will be required between applications scientists and system architects in order to come up with a suitable cyberinfrastructure for biology in “Specifications for the Next-Generation Computational Biology Infrastructure.” One of the five integration models Jakobsson outlines is “Integration of algorithmic development with computing architecture design.” He says:

“The different types of biological computing have vastly different patterns of computer utilization. Some applications are very CPU-intensive, some require large amounts of memory, some must access enormous data stores, some are much more readily parallelizable than others, and there are highly varied requirements for bandwidth between hard drive, memory, and processor.”

Jakobsson suggests that more extensive mutual tuning of computer architecture to applications software would make existing and projected computational resources more productive. One case of such tuning is the molecular simulation code Blue Matter, designed to leverage the architecture of the IBM Blue Gene supercomputer. Jakobsson praises the Blue Matter-Blue Gene combination, declaring that it has enabled important new discoveries.
 
Jakobsson also calls for better training in the area of computational biology at the undergraduate and graduate levels. He points to the University of California at Merced as one institution that has fully integrated computing into all levels of its biology curriculum as called for in the National Academy of Sciences BIO 2010 report.

In “Genome Sequencing vs. Moore's Law: Cyber Challenges for the Next Decade” Folker Meyer of the Argonne National Laboratory addresses the challenge of the number of sequenced genomes growing faster than Moore's Law. He states that the number of available complete genomic sequences is doubling every 12 months, faster than Moore's 18 months. “The analysis of genomic sequences requires serious computational effort: most analysis techniques require binary comparison of genomes or the genes within genomes. Since the number of binary comparisons grows as the square of the number of sequences involved, the computational overhead of the sequence comparisons alone will become staggering.”

As the number of sequences grows so do the number of algorithms to study them, requiring additional computer power. For example, using Hidden Markov Models to search for sequence similarities not visible with the traditionally used BLAST algorithm requires greater computing resources. The author states that the TeraGrid is one of the few resources that can handle the computational requirement. We need to overcome these limitations in order to study and better understand “crop plants, pathogens and ultimately human beings.” To resolve the gap between data and resource, the author calls for new bioinformatics techniques as well as high-throughput computing, concluding that “biology is in the middle of a paradigm shift towards becoming a fully data driven science.”

In “Computing and the “Age of Biology,' ” Natalia Maltsev of the Argonne National Laboratory calls for the “development of high-throughput computational environments that integrate (i) large amounts of genomic and experimental data, (ii) comprehensive tools and algorithms for knowledge discovery and data mining, and (iii) comprehensive user interfaces that provide tools for easy access, navigation, visualization, and annotation of biological information.” For achieving this integrated environment, Maltev makes four recommendations.

First, she calls for large, public, scalable computational resources to handle the exponential growth of biological data. For example, the largest genomic database, GenBank, contains 56 billion bases, from 52 million sequences; and as the cost of sequencing new genomes drops, the rate of growth of GenBank is expected to increase dramatically.

Second, Maltev proposes a new model to handle the increasing complexity of biological data. She states that biology is becoming increasingly multi-disciplinary, “using information from different branches of life sciences; genomics, physiology, biochemistry, biophysics, proteomics, and many more.” The model needs to incorporate various classes of biological information as well as similar classes of data from different resources. According to Maltev, the difficulty with an integrated model is due to “the large volume and complexity of data, the distributed character of this information residing in different databases, shortfalls of current biological ontologies, and generally poor naming conventions for biological objects.”

Maltsev's third recommendation is algorithm development. The current bioinformatic tools (for example, BLAST and FASTA) are not adequate to handle the exponential growth of sequence data. Maltev says “bioinformatics will significantly benefit from the development of a new generation of algorithms that will allow efficient data mining and identification of complex multidimensional patterns involving various classes of data.”

Maltev's fourth and final recommendation is the development of collaborative environments that will allow researches in different locations to view and analyze the data. Maltev claims that storing data and its analysis in one location will not meet the needs of biology in the future. She also calls for visualization of information to reduce its complexity.

Maltev's article provides an accessible framework for understanding the challenges of computational biology. In the “age of biology,” computing and biology will unite to solve major global problems such as curing deadly diseases and ending world hunger.

The message in all of these articles is that biology has become a data-driven discipline and is becoming increasingly more so. Computational resources cannot keep up with the data, and questions are piling up faster than answers. Remedying this situation is essential for progress.

—–

To view the complete issue of CTWatch, visit their website at http://www.ctwatch.org/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft, Nvidia Launch Cloud HPC

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an Infiniband network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the compa Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

Hazra Retiring from Intel Data Center Group, Successor Unknown

November 20, 2019

This article is an update to a story published earlier today. Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Governm Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This