Computational Biology: Challenges and Opportunities

By Tiffany Trader

September 22, 2006

The current issue of the quarterly publication, CTWatch, focuses on the issues and challenges facing the field of computational biology today and in the future. A recurring theme throughout all of the articles is that the field of biology is becoming increasingly data driven and is producing data faster than computers can process it. The authors address the limitations of our current cyberinfrastructure and suggest strategies to overcome these challenges.

In his introduction, “Trends in Cyberinfrastructure for Bioinformatics and Computational Biology,” Rick Stevens, Associate Laboratory Director, Computing and Life Sciences of Argonne National Laboratory and Professor, Computer Science Department of The University of Chicago, outlines three major trends in biology research: the increasing availability of high-throughput data, the acceleration of the pace of questions whose answers rely on increasing computation resources, and simulation and modeling technologies that will eventually lead to predictive biological theory.

Stevens addresses the role of petascale computing with regard to fundamental biological problems, such as the evolutionary history of genes and genomes. This is significant, as the number of completed genome sequences will reach 1,000 in the next few years. He provides a list of multiple “problem areas” and their estimated time to completion at three levels of computing power (360, 1000, and 5000 teraflops). For example, on the IBM Blue Gene/L, screening “all known microbial drug targets against the public and private databases of chemical compounds to identify potential new inhibitors and potential drugs,” would take one year for all microbial targets at 360 teraflops, a one month for all microbial targets at 1000 teraflops, and one machine year for all known human drug targets at 5000 teraflops.

Eric Jakobsson of the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign discusses the initiatives that will be required between applications scientists and system architects in order to come up with a suitable cyberinfrastructure for biology in “Specifications for the Next-Generation Computational Biology Infrastructure.” One of the five integration models Jakobsson outlines is “Integration of algorithmic development with computing architecture design.” He says:

“The different types of biological computing have vastly different patterns of computer utilization. Some applications are very CPU-intensive, some require large amounts of memory, some must access enormous data stores, some are much more readily parallelizable than others, and there are highly varied requirements for bandwidth between hard drive, memory, and processor.”

Jakobsson suggests that more extensive mutual tuning of computer architecture to applications software would make existing and projected computational resources more productive. One case of such tuning is the molecular simulation code Blue Matter, designed to leverage the architecture of the IBM Blue Gene supercomputer. Jakobsson praises the Blue Matter-Blue Gene combination, declaring that it has enabled important new discoveries.
 
Jakobsson also calls for better training in the area of computational biology at the undergraduate and graduate levels. He points to the University of California at Merced as one institution that has fully integrated computing into all levels of its biology curriculum as called for in the National Academy of Sciences BIO 2010 report.

In “Genome Sequencing vs. Moore's Law: Cyber Challenges for the Next Decade” Folker Meyer of the Argonne National Laboratory addresses the challenge of the number of sequenced genomes growing faster than Moore's Law. He states that the number of available complete genomic sequences is doubling every 12 months, faster than Moore's 18 months. “The analysis of genomic sequences requires serious computational effort: most analysis techniques require binary comparison of genomes or the genes within genomes. Since the number of binary comparisons grows as the square of the number of sequences involved, the computational overhead of the sequence comparisons alone will become staggering.”

As the number of sequences grows so do the number of algorithms to study them, requiring additional computer power. For example, using Hidden Markov Models to search for sequence similarities not visible with the traditionally used BLAST algorithm requires greater computing resources. The author states that the TeraGrid is one of the few resources that can handle the computational requirement. We need to overcome these limitations in order to study and better understand “crop plants, pathogens and ultimately human beings.” To resolve the gap between data and resource, the author calls for new bioinformatics techniques as well as high-throughput computing, concluding that “biology is in the middle of a paradigm shift towards becoming a fully data driven science.”

In “Computing and the “Age of Biology,' ” Natalia Maltsev of the Argonne National Laboratory calls for the “development of high-throughput computational environments that integrate (i) large amounts of genomic and experimental data, (ii) comprehensive tools and algorithms for knowledge discovery and data mining, and (iii) comprehensive user interfaces that provide tools for easy access, navigation, visualization, and annotation of biological information.” For achieving this integrated environment, Maltev makes four recommendations.

First, she calls for large, public, scalable computational resources to handle the exponential growth of biological data. For example, the largest genomic database, GenBank, contains 56 billion bases, from 52 million sequences; and as the cost of sequencing new genomes drops, the rate of growth of GenBank is expected to increase dramatically.

Second, Maltev proposes a new model to handle the increasing complexity of biological data. She states that biology is becoming increasingly multi-disciplinary, “using information from different branches of life sciences; genomics, physiology, biochemistry, biophysics, proteomics, and many more.” The model needs to incorporate various classes of biological information as well as similar classes of data from different resources. According to Maltev, the difficulty with an integrated model is due to “the large volume and complexity of data, the distributed character of this information residing in different databases, shortfalls of current biological ontologies, and generally poor naming conventions for biological objects.”

Maltsev's third recommendation is algorithm development. The current bioinformatic tools (for example, BLAST and FASTA) are not adequate to handle the exponential growth of sequence data. Maltev says “bioinformatics will significantly benefit from the development of a new generation of algorithms that will allow efficient data mining and identification of complex multidimensional patterns involving various classes of data.”

Maltev's fourth and final recommendation is the development of collaborative environments that will allow researches in different locations to view and analyze the data. Maltev claims that storing data and its analysis in one location will not meet the needs of biology in the future. She also calls for visualization of information to reduce its complexity.

Maltev's article provides an accessible framework for understanding the challenges of computational biology. In the “age of biology,” computing and biology will unite to solve major global problems such as curing deadly diseases and ending world hunger.

The message in all of these articles is that biology has become a data-driven discipline and is becoming increasingly more so. Computational resources cannot keep up with the data, and questions are piling up faster than answers. Remedying this situation is essential for progress.

—–

To view the complete issue of CTWatch, visit their website at http://www.ctwatch.org/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This