Computational Biology: Challenges and Opportunities

By Tiffany Trader

September 22, 2006

The current issue of the quarterly publication, CTWatch, focuses on the issues and challenges facing the field of computational biology today and in the future. A recurring theme throughout all of the articles is that the field of biology is becoming increasingly data driven and is producing data faster than computers can process it. The authors address the limitations of our current cyberinfrastructure and suggest strategies to overcome these challenges.

In his introduction, “Trends in Cyberinfrastructure for Bioinformatics and Computational Biology,” Rick Stevens, Associate Laboratory Director, Computing and Life Sciences of Argonne National Laboratory and Professor, Computer Science Department of The University of Chicago, outlines three major trends in biology research: the increasing availability of high-throughput data, the acceleration of the pace of questions whose answers rely on increasing computation resources, and simulation and modeling technologies that will eventually lead to predictive biological theory.

Stevens addresses the role of petascale computing with regard to fundamental biological problems, such as the evolutionary history of genes and genomes. This is significant, as the number of completed genome sequences will reach 1,000 in the next few years. He provides a list of multiple “problem areas” and their estimated time to completion at three levels of computing power (360, 1000, and 5000 teraflops). For example, on the IBM Blue Gene/L, screening “all known microbial drug targets against the public and private databases of chemical compounds to identify potential new inhibitors and potential drugs,” would take one year for all microbial targets at 360 teraflops, a one month for all microbial targets at 1000 teraflops, and one machine year for all known human drug targets at 5000 teraflops.

Eric Jakobsson of the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign discusses the initiatives that will be required between applications scientists and system architects in order to come up with a suitable cyberinfrastructure for biology in “Specifications for the Next-Generation Computational Biology Infrastructure.” One of the five integration models Jakobsson outlines is “Integration of algorithmic development with computing architecture design.” He says:

“The different types of biological computing have vastly different patterns of computer utilization. Some applications are very CPU-intensive, some require large amounts of memory, some must access enormous data stores, some are much more readily parallelizable than others, and there are highly varied requirements for bandwidth between hard drive, memory, and processor.”

Jakobsson suggests that more extensive mutual tuning of computer architecture to applications software would make existing and projected computational resources more productive. One case of such tuning is the molecular simulation code Blue Matter, designed to leverage the architecture of the IBM Blue Gene supercomputer. Jakobsson praises the Blue Matter-Blue Gene combination, declaring that it has enabled important new discoveries.
 
Jakobsson also calls for better training in the area of computational biology at the undergraduate and graduate levels. He points to the University of California at Merced as one institution that has fully integrated computing into all levels of its biology curriculum as called for in the National Academy of Sciences BIO 2010 report.

In “Genome Sequencing vs. Moore's Law: Cyber Challenges for the Next Decade” Folker Meyer of the Argonne National Laboratory addresses the challenge of the number of sequenced genomes growing faster than Moore's Law. He states that the number of available complete genomic sequences is doubling every 12 months, faster than Moore's 18 months. “The analysis of genomic sequences requires serious computational effort: most analysis techniques require binary comparison of genomes or the genes within genomes. Since the number of binary comparisons grows as the square of the number of sequences involved, the computational overhead of the sequence comparisons alone will become staggering.”

As the number of sequences grows so do the number of algorithms to study them, requiring additional computer power. For example, using Hidden Markov Models to search for sequence similarities not visible with the traditionally used BLAST algorithm requires greater computing resources. The author states that the TeraGrid is one of the few resources that can handle the computational requirement. We need to overcome these limitations in order to study and better understand “crop plants, pathogens and ultimately human beings.” To resolve the gap between data and resource, the author calls for new bioinformatics techniques as well as high-throughput computing, concluding that “biology is in the middle of a paradigm shift towards becoming a fully data driven science.”

In “Computing and the “Age of Biology,' ” Natalia Maltsev of the Argonne National Laboratory calls for the “development of high-throughput computational environments that integrate (i) large amounts of genomic and experimental data, (ii) comprehensive tools and algorithms for knowledge discovery and data mining, and (iii) comprehensive user interfaces that provide tools for easy access, navigation, visualization, and annotation of biological information.” For achieving this integrated environment, Maltev makes four recommendations.

First, she calls for large, public, scalable computational resources to handle the exponential growth of biological data. For example, the largest genomic database, GenBank, contains 56 billion bases, from 52 million sequences; and as the cost of sequencing new genomes drops, the rate of growth of GenBank is expected to increase dramatically.

Second, Maltev proposes a new model to handle the increasing complexity of biological data. She states that biology is becoming increasingly multi-disciplinary, “using information from different branches of life sciences; genomics, physiology, biochemistry, biophysics, proteomics, and many more.” The model needs to incorporate various classes of biological information as well as similar classes of data from different resources. According to Maltev, the difficulty with an integrated model is due to “the large volume and complexity of data, the distributed character of this information residing in different databases, shortfalls of current biological ontologies, and generally poor naming conventions for biological objects.”

Maltsev's third recommendation is algorithm development. The current bioinformatic tools (for example, BLAST and FASTA) are not adequate to handle the exponential growth of sequence data. Maltev says “bioinformatics will significantly benefit from the development of a new generation of algorithms that will allow efficient data mining and identification of complex multidimensional patterns involving various classes of data.”

Maltev's fourth and final recommendation is the development of collaborative environments that will allow researches in different locations to view and analyze the data. Maltev claims that storing data and its analysis in one location will not meet the needs of biology in the future. She also calls for visualization of information to reduce its complexity.

Maltev's article provides an accessible framework for understanding the challenges of computational biology. In the “age of biology,” computing and biology will unite to solve major global problems such as curing deadly diseases and ending world hunger.

The message in all of these articles is that biology has become a data-driven discipline and is becoming increasingly more so. Computational resources cannot keep up with the data, and questions are piling up faster than answers. Remedying this situation is essential for progress.

—–

To view the complete issue of CTWatch, visit their website at http://www.ctwatch.org/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This