TACC Receives $59 Million NSF Award For Sun Supercomputer

By Nicole Hemsoth

September 29, 2006

University of Texas, Arizona State University, Cornell University and Sun Microsystems to deploy the world's most powerful general-purpose computing system on the TeraGrid

The National Science Foundation (NSF) has made a five-year, $59 million award to the Texas Advanced Computing Center (TACC) at The University of Texas at Austin to acquire, operate and support a high performance computing system that will provide unprecedented computational power to the nation's research scientists and engineers.

“This is a very valuable resource for the scientific community and society in general,” said William Powers Jr., president of the university. “This award confirms that The University of Texas at Austin is an innovative leader in high performance computing and research.” The award is the largest NSF award ever to The University of Texas at Austin.

The University of Texas at Austin project team is led by Dr. Jay Boisseau, director of TACC, and includes leading researchers from TACC and the Institute for Computational Engineering & Sciences (ICES). UT Austin, in collaboration with Sun Microsystems, Arizona State University and Cornell Theory Center (CTC) at Cornell University, submitted the proposal in response to the NSF's High Performance Computing System Acquisition Program's inaugural competition. The program is designed to deploy and support world-class high performance computing systems with tremendous capacity and capability to empower the U.S. research community. The award covers the acquisition and deployment of the new Sun system and four years of operations and support to the national community to enhance leading research programs. TACC will be the lead partner, with assistance from ICES, ASU and CTC in the areas of applications optimization, large-scale data management, software tools evaluation and testing, and user training and education.

High performance computing has become a vital investigative tool in many science and engineering disciplines.  It enables testing and validation of theories and analysis of vast volumes of experimental data generated by modern scientific instruments, such as the very high-energy particle accelerators in the United States and Europe. HPC makes it possible for researchers to conduct experiments that would otherwise be impossible — studying the dynamics of the Earth's climate in the distant past, for example,  investigating how the universe developed, or discovering how complex biological molecules mediate the processes that sustain life. In industry, high performance computing is used in everything from aircraft design and improvement of automobile crash-worthiness, to the creation of breath-taking animations in the cinema and production of snack food.

The NSF Office of Cyberinfrastructure (OCI) coordinates and supports the acquisition, development and provision of state-of-the-art cyberinfrastructure resources, tools and services essential to 21st century science and engineering research and education, including HPC systems. The TeraGrid, sponsored by OCI, integrates a distributed set of high capability computational, data management and visualization resources to enable and accelerate discovery in science and engineering research, making research in the United States more productive. The new Sun HPC system at TACC will become the most powerful computational resource in the TeraGrid.

Juan Sanchez, vice president for research at UT Austin, said the new supercomputer will enable a new wave of research and researchers. “The Texas Advanced Computing Center is highly qualified to manage this powerful system, which will have a deep impact on science,” Sanchez said. “The scale of the hardware and its scientific potential will influence technology research and development in many areas, and the results and possibilities will contribute to increasing public awareness of high performance computing. In addition, the project team is deeply committed to training the next generation of researchers for using HPC resources.”

TACC is partnering with Sun Microsystems to deploy a supercomputer system specifically developed to support very large science and engineering computing requirements. In its final configuration in 2007, the supercomputer will have a peak performance in excess of 400 teraflops, making it one of the most powerful supercomputer systems in the world. It will also provide over 100 terabytes of memory and 1.7 petabytes of disk storage. The system is based on Sun Fire x64 (x86, 64-bit) servers and Sun StorageTek disk and tape storage technologies, and will use over 13,000 of AMD's forthcoming quad-core processors. It will be housed in TACC's new building on the J.J. Pickle Research Campus in Austin, Texas.

This system marks Sun's largest HPC installation to-date. “Sun's new supercomputer and storage technologies create a powerful combination that will allow TACC to build and operate a supercomputer delivering more than 400 teraflops,” said Marc Hamilton, director of HPC Solutions, Sun Microsystems. “We are excited about extending our long standing relationship with TACC with this system, making it possible for scientists and engineers to reap the benefits of one of the world's most powerful supercomputers.” Kevin Knox, AMD's vice president for worldwide commercial business, said, “The design and performance of the AMD Opteron processor and our planned quad-core processor roadmap have been integral in supplying the best option for high performance computing deployments to customers such as Sun to provide to businesses, universities and government research centers.”

“The new Sun system will provide unmatched capability and capacity for scientific discovery for the open research community,” Boisseau said. “The technologies in the new Sun systems will enable breakthrough performance on important science problems.”  Added Tommy Minyard, assistant director for advanced computational systems at TACC and the team project manager, “With tremendous and balanced processor, memory, disk, and interconnect capabilities, this powerful system will enable both numerically-intensive and large scale data applications in many scientific disciplines.”

Under the agreement with the NSF, five percent of the computer's processing time will be allocated to industrial research and development through TACC's Science & Technology Affiliates for Research (STAR) program. “High performance computing is essential to innovation, in business as well as in science,” said Melyssa Fratkin, TACC's industrial affiliates program manager. “We anticipate collaborations with a wide range of companies that will take advantage of this powerful computing system, to achieve the breakthrough insights they need to maintain a competitive edge in the global marketplace.”

Another five percent will be allocated to other Texas academic institutions. “This resource will help Texas academic researchers provide answers to some of the most perplexing scientific questions,” said Dr. Mark Yudof, chancellor of the University of Texas System.

The initial configuration of this system will go into production on June 1, 2007, with the final configuration in operation by October 2007. User training will begin shortly before deployment to help researchers utilize this resource. “Our Virtual Workshop technology will help researchers across the US rapidly come up to speed on using the new system,” said Dave Lifka, CTC's director of high performance & innovative computing. Added Dan Stanzione, director of the ASU High Performance Computing Initiative, “Effectively training and supporting a national community will be just as important to addressing the most important scientific challenges as making the hardware available.”

HPC systems are enabling researchers to address important problems in nearly all fields of science. From understanding the 3D structure and function of proteins to predicting severe weather events, HPC resources have become indispensable to knowledge discovery in life sciences, geosciences, social sciences and engineering, producing results that have direct bearing on society and quality of life. Furthermore, HPC resources are required for basic research across disciplines, from understanding the synthesis of all heavy elements via supernova explosions to mapping the evolutionary history of all organisms throughout the history of life on Earth.

“The new TACC/Sun system has great potential for advancing the study of quantum chromodynamics,” said Bob Sugar, a research professor in the department of physics at the University of California. Sugar and his colleagues study the fundamental forces of nature to obtain a deeper understanding of the laws of physics — electromagneticism, weak interactions, and quantum chromodynamics (QCD), the theory of the strong interactions. They also study the properties of matter under extreme conditions of temperature and density, such as those that existed immediately after the Big Bang.
 
“Our research requires highly capable computers,” Sugar continued. “This system will lead to major advances in our work and that of many other high energy physicists. I expect to see important progress on problems that are presently beyond our reach.”

As the head of the Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign, Klaus Schulten conducts groundbreaking research in computational life science, investigating how cells in all organisms synthesize new proteins from genetic instructions and how plants convert sunlight into chemical energy. Schulten also assists bioengineers in developing medical nanodevices.

“TACC is a major provider of supercomputer power to U.S. researchers,” Schulten said. “The new TACC/Sun system, combined with our group's award-winning parallel molecular dynamics code, promises to simulate the largest structures yet of living cells. This will turn the TACC/Sun system into a new type of microscope that shows how viruses infect human cells, how obesity is fought through the cell's own proteins, and how nature harvests sunlight to fuel all life on Earth,” Schulten concluded.

“TeraGrid users will be able to conduct simulations that are currently impossible, and researchers from diverse fields of science will develop entirely new applications for scientific discovery,” said Omar Ghattas of ICES, the project's chief applications scientist. Ghattas, Karl Schulz of TACC, and Giri Chukkapalli of Sun will lead the high-level collaborations activities with leading researchers across the US such as Sugar and Schulten to ensure that the Sun system is used most effectively on important and strategic research challenges.

“This Sun system will enable scientific codes to achieve greater performance on vastly larger problems, with higher resolution and accuracy, than ever before. It is no exaggeration to say it will be one of the most important scientific instruments in the world,” concluded Boisseau.

—–

Source: Texas Advanced Computing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This