TACC Receives $59 Million NSF Award For Sun Supercomputer

By Nicole Hemsoth

September 29, 2006

University of Texas, Arizona State University, Cornell University and Sun Microsystems to deploy the world's most powerful general-purpose computing system on the TeraGrid

The National Science Foundation (NSF) has made a five-year, $59 million award to the Texas Advanced Computing Center (TACC) at The University of Texas at Austin to acquire, operate and support a high performance computing system that will provide unprecedented computational power to the nation's research scientists and engineers.

“This is a very valuable resource for the scientific community and society in general,” said William Powers Jr., president of the university. “This award confirms that The University of Texas at Austin is an innovative leader in high performance computing and research.” The award is the largest NSF award ever to The University of Texas at Austin.

The University of Texas at Austin project team is led by Dr. Jay Boisseau, director of TACC, and includes leading researchers from TACC and the Institute for Computational Engineering & Sciences (ICES). UT Austin, in collaboration with Sun Microsystems, Arizona State University and Cornell Theory Center (CTC) at Cornell University, submitted the proposal in response to the NSF's High Performance Computing System Acquisition Program's inaugural competition. The program is designed to deploy and support world-class high performance computing systems with tremendous capacity and capability to empower the U.S. research community. The award covers the acquisition and deployment of the new Sun system and four years of operations and support to the national community to enhance leading research programs. TACC will be the lead partner, with assistance from ICES, ASU and CTC in the areas of applications optimization, large-scale data management, software tools evaluation and testing, and user training and education.

High performance computing has become a vital investigative tool in many science and engineering disciplines.  It enables testing and validation of theories and analysis of vast volumes of experimental data generated by modern scientific instruments, such as the very high-energy particle accelerators in the United States and Europe. HPC makes it possible for researchers to conduct experiments that would otherwise be impossible — studying the dynamics of the Earth's climate in the distant past, for example,  investigating how the universe developed, or discovering how complex biological molecules mediate the processes that sustain life. In industry, high performance computing is used in everything from aircraft design and improvement of automobile crash-worthiness, to the creation of breath-taking animations in the cinema and production of snack food.

The NSF Office of Cyberinfrastructure (OCI) coordinates and supports the acquisition, development and provision of state-of-the-art cyberinfrastructure resources, tools and services essential to 21st century science and engineering research and education, including HPC systems. The TeraGrid, sponsored by OCI, integrates a distributed set of high capability computational, data management and visualization resources to enable and accelerate discovery in science and engineering research, making research in the United States more productive. The new Sun HPC system at TACC will become the most powerful computational resource in the TeraGrid.

Juan Sanchez, vice president for research at UT Austin, said the new supercomputer will enable a new wave of research and researchers. “The Texas Advanced Computing Center is highly qualified to manage this powerful system, which will have a deep impact on science,” Sanchez said. “The scale of the hardware and its scientific potential will influence technology research and development in many areas, and the results and possibilities will contribute to increasing public awareness of high performance computing. In addition, the project team is deeply committed to training the next generation of researchers for using HPC resources.”

TACC is partnering with Sun Microsystems to deploy a supercomputer system specifically developed to support very large science and engineering computing requirements. In its final configuration in 2007, the supercomputer will have a peak performance in excess of 400 teraflops, making it one of the most powerful supercomputer systems in the world. It will also provide over 100 terabytes of memory and 1.7 petabytes of disk storage. The system is based on Sun Fire x64 (x86, 64-bit) servers and Sun StorageTek disk and tape storage technologies, and will use over 13,000 of AMD's forthcoming quad-core processors. It will be housed in TACC's new building on the J.J. Pickle Research Campus in Austin, Texas.

This system marks Sun's largest HPC installation to-date. “Sun's new supercomputer and storage technologies create a powerful combination that will allow TACC to build and operate a supercomputer delivering more than 400 teraflops,” said Marc Hamilton, director of HPC Solutions, Sun Microsystems. “We are excited about extending our long standing relationship with TACC with this system, making it possible for scientists and engineers to reap the benefits of one of the world's most powerful supercomputers.” Kevin Knox, AMD's vice president for worldwide commercial business, said, “The design and performance of the AMD Opteron processor and our planned quad-core processor roadmap have been integral in supplying the best option for high performance computing deployments to customers such as Sun to provide to businesses, universities and government research centers.”

“The new Sun system will provide unmatched capability and capacity for scientific discovery for the open research community,” Boisseau said. “The technologies in the new Sun systems will enable breakthrough performance on important science problems.”  Added Tommy Minyard, assistant director for advanced computational systems at TACC and the team project manager, “With tremendous and balanced processor, memory, disk, and interconnect capabilities, this powerful system will enable both numerically-intensive and large scale data applications in many scientific disciplines.”

Under the agreement with the NSF, five percent of the computer's processing time will be allocated to industrial research and development through TACC's Science & Technology Affiliates for Research (STAR) program. “High performance computing is essential to innovation, in business as well as in science,” said Melyssa Fratkin, TACC's industrial affiliates program manager. “We anticipate collaborations with a wide range of companies that will take advantage of this powerful computing system, to achieve the breakthrough insights they need to maintain a competitive edge in the global marketplace.”

Another five percent will be allocated to other Texas academic institutions. “This resource will help Texas academic researchers provide answers to some of the most perplexing scientific questions,” said Dr. Mark Yudof, chancellor of the University of Texas System.

The initial configuration of this system will go into production on June 1, 2007, with the final configuration in operation by October 2007. User training will begin shortly before deployment to help researchers utilize this resource. “Our Virtual Workshop technology will help researchers across the US rapidly come up to speed on using the new system,” said Dave Lifka, CTC's director of high performance & innovative computing. Added Dan Stanzione, director of the ASU High Performance Computing Initiative, “Effectively training and supporting a national community will be just as important to addressing the most important scientific challenges as making the hardware available.”

HPC systems are enabling researchers to address important problems in nearly all fields of science. From understanding the 3D structure and function of proteins to predicting severe weather events, HPC resources have become indispensable to knowledge discovery in life sciences, geosciences, social sciences and engineering, producing results that have direct bearing on society and quality of life. Furthermore, HPC resources are required for basic research across disciplines, from understanding the synthesis of all heavy elements via supernova explosions to mapping the evolutionary history of all organisms throughout the history of life on Earth.

“The new TACC/Sun system has great potential for advancing the study of quantum chromodynamics,” said Bob Sugar, a research professor in the department of physics at the University of California. Sugar and his colleagues study the fundamental forces of nature to obtain a deeper understanding of the laws of physics — electromagneticism, weak interactions, and quantum chromodynamics (QCD), the theory of the strong interactions. They also study the properties of matter under extreme conditions of temperature and density, such as those that existed immediately after the Big Bang.
 
“Our research requires highly capable computers,” Sugar continued. “This system will lead to major advances in our work and that of many other high energy physicists. I expect to see important progress on problems that are presently beyond our reach.”

As the head of the Theoretical and Computational Biophysics Group at the University of Illinois at Urbana-Champaign, Klaus Schulten conducts groundbreaking research in computational life science, investigating how cells in all organisms synthesize new proteins from genetic instructions and how plants convert sunlight into chemical energy. Schulten also assists bioengineers in developing medical nanodevices.

“TACC is a major provider of supercomputer power to U.S. researchers,” Schulten said. “The new TACC/Sun system, combined with our group's award-winning parallel molecular dynamics code, promises to simulate the largest structures yet of living cells. This will turn the TACC/Sun system into a new type of microscope that shows how viruses infect human cells, how obesity is fought through the cell's own proteins, and how nature harvests sunlight to fuel all life on Earth,” Schulten concluded.

“TeraGrid users will be able to conduct simulations that are currently impossible, and researchers from diverse fields of science will develop entirely new applications for scientific discovery,” said Omar Ghattas of ICES, the project's chief applications scientist. Ghattas, Karl Schulz of TACC, and Giri Chukkapalli of Sun will lead the high-level collaborations activities with leading researchers across the US such as Sugar and Schulten to ensure that the Sun system is used most effectively on important and strategic research challenges.

“This Sun system will enable scientific codes to achieve greater performance on vastly larger problems, with higher resolution and accuracy, than ever before. It is no exaggeration to say it will be one of the most important scientific instruments in the world,” concluded Boisseau.

—–

Source: Texas Advanced Computing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This