The Role of HPC in AIDS Vaccine Designs

By Nicole Hemsoth

September 29, 2006

Since human immunodeficiency virus (HIV) — the virus that causes AIDS — was first isolated in 1981, 25 million people have died of the disease. Worldwide it is estimated that there are currently more than 65 million adults and children infected with the virus. Nearly a quarter of a century on from identifying the virus we now have effective treatments. But they're expensive and, if doses are missed, the effects can be catastrophic. HIV, in short, continues to be one of the major threats to global health.

High performance computing (HPC) is playing a key role in coming up with an HIV vaccine. Even within a single infected patient the rapidly evolving HIV virus creates an enormous amount of data for potential analysis. This kind of statistical analysis requires randomization testing on an enormous scale, which in turn needs a computationally intensive approach to shorten the timescale between potentially ground-breaking medical observations and the arrival of effective treatments.

For the past three years, David Heckerman, senior researcher, and Carl Kadie, research software development engineer, both at Microsoft Research, have been applying their backgrounds in machine learning to the challenge of using high performance computing to pursue the ultimate AIDS vaccine design.

HPCwire: What are the primary goals of your work on HIV vaccine design?

Heckerman: Vaccine design has two key aims. We're working on the payload or what is called the “immunogen” of the vaccine — the substance that provokes an immune response. The other important goal of vaccine design is the means of delivering the vaccine, or what is called the “vector.”

The tricky part in designing the immunogen is the fact that the HIV virus mutates so rapidly. So pernicious is the virus that it contains an in-built protein that deliberately makes mistakes when it is replicated. By mutating rapidly, the virus is able to constantly escape attacks by our immune system.

Our plan is to identify the potential escape routes of the virus and to prime our immune systems to target the virus, regardless of which exit route it chooses.
 
HPCwire: Why is HPC particularly important when it comes to finding a cure for HIV?

Kadie: When HIV infects a new person it actually changes to throw off the mutations it developed in the previous person. The way it changes depends on the type of immune system you have. There are hundreds of different types of immune systems, leading to many different types of HIV. There are certain patterns of mutation that are repeating themselves across the human population around the world that are not obvious to the human eye — thousands of human sequences to look at. Much of our work involves building simulations of how the virus mutates in response to attacks by the immune system. Our most accurate simulations are extremely computationally intensive, requiring HPC.

HPCwire: During his Supercomputing 2005 keynote, Bill Gates addressed the transformation resulting from the availability of massive amounts of real-world data from low-cost sensors. What opportunities and challenges does this scenario present in your work?

Heckerman: In our case, the real world sensors are the countless health workers scattered throughout the world — especially in third-world areas where HIV is endemic — who are monitoring the health of the local inhabitants, taking blood samples for experimentation purposes, and offering treatment whenever possible.

HPCwire: What kind of HPC cluster do you have in place to do your work?

Kadie: The simulations require massive amounts of computation — sometimes as much as a CPU year of computation for a single run. Using Windows Compute Cluster Server 2003, we have racked up dozens of CPU years of results that are helping us further our understanding of the way HIV interacts with our immune system.

The HPC cluster is based on 25 IBM eServer 326 boxes, with two AMD Opteron processors per machine running at 2.6GHz. Of the eight new research programs we've got under way, six use .NET (C# and C++/CLI), one is in “R” and one in native C++.
 
HPCwire: In order to achieve the next big breakthrough, what advanced computing capabilities are on your wish list?

Kadie: We need to be able to grab more cycles from more computers in as painless a way possible. One of the key roadblocks here is trust. When moving beyond clusters to grids, we can no longer trust the machines on which we run our simulations, and the owners of those machines can't trust our software. A solution that makes computation seamless in this environment is critical.

HPCwire: How do you think your HIV vaccine design work will have progressed in five years time?

Heckerman: We're currently moving from using HPC to simulate the reactions to exposure to HIV in test tubes, to animal studies, particularly mice. Five years down the line we hope to be in the human phase, innoculating humans with an HIV vaccine simulating the — hopefully effective — response of their immune systems.

Our statistical analyses could also prove of potential benefit in looking at other viral infections where you see a lot of mutations. Hepatitis C, is an example where we might also be able to come up with an effective vaccine with the help of our HPC-based approach.

HPCwire: Taking a mile high view, what kind of the impact do you think your current work with HPC and computational statistics will have on the medical profession in general?

Heckerman: Experts are pointing to “personalized medicine” as the next breatkthrough in medical care. In the current medical paradigm, the patient becomes aware of certain symptoms and goes to the doctor. He or she is then prescribed treatments taught in medical schools — treatments almost invariably based on effectiveness in the general population rather than effectiveness in the individual patient. While such treatments often work, sometimes they don't and can have side effects that cause as many problems as they solve.

Personalized medicine, in contrast, involves assessing an individual's genetic predisposition to a particular disease or treatments. With such information, diseases could be treated before exacting enormous personal and social costs, and treatments that cause harmful side effects in a particular individual could be avoided. The HPC methods that we have been applying to the study of HIV can be used to tease out the relationship between genes, disease, and treatment and thus provide a basis for personalized medicine.

—–

Carl Kadie                              David Heckerman                                                             

Carl Kadie
                David Heckerman               

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

What’s New in Computing vs. COVID-19: IceCube, TACC, Watson & More

May 28, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This