The Role of HPC in AIDS Vaccine Designs

By Nicole Hemsoth

September 29, 2006

Since human immunodeficiency virus (HIV) — the virus that causes AIDS — was first isolated in 1981, 25 million people have died of the disease. Worldwide it is estimated that there are currently more than 65 million adults and children infected with the virus. Nearly a quarter of a century on from identifying the virus we now have effective treatments. But they're expensive and, if doses are missed, the effects can be catastrophic. HIV, in short, continues to be one of the major threats to global health.

High performance computing (HPC) is playing a key role in coming up with an HIV vaccine. Even within a single infected patient the rapidly evolving HIV virus creates an enormous amount of data for potential analysis. This kind of statistical analysis requires randomization testing on an enormous scale, which in turn needs a computationally intensive approach to shorten the timescale between potentially ground-breaking medical observations and the arrival of effective treatments.

For the past three years, David Heckerman, senior researcher, and Carl Kadie, research software development engineer, both at Microsoft Research, have been applying their backgrounds in machine learning to the challenge of using high performance computing to pursue the ultimate AIDS vaccine design.

HPCwire: What are the primary goals of your work on HIV vaccine design?

Heckerman: Vaccine design has two key aims. We're working on the payload or what is called the “immunogen” of the vaccine — the substance that provokes an immune response. The other important goal of vaccine design is the means of delivering the vaccine, or what is called the “vector.”

The tricky part in designing the immunogen is the fact that the HIV virus mutates so rapidly. So pernicious is the virus that it contains an in-built protein that deliberately makes mistakes when it is replicated. By mutating rapidly, the virus is able to constantly escape attacks by our immune system.

Our plan is to identify the potential escape routes of the virus and to prime our immune systems to target the virus, regardless of which exit route it chooses.
 
HPCwire: Why is HPC particularly important when it comes to finding a cure for HIV?

Kadie: When HIV infects a new person it actually changes to throw off the mutations it developed in the previous person. The way it changes depends on the type of immune system you have. There are hundreds of different types of immune systems, leading to many different types of HIV. There are certain patterns of mutation that are repeating themselves across the human population around the world that are not obvious to the human eye — thousands of human sequences to look at. Much of our work involves building simulations of how the virus mutates in response to attacks by the immune system. Our most accurate simulations are extremely computationally intensive, requiring HPC.

HPCwire: During his Supercomputing 2005 keynote, Bill Gates addressed the transformation resulting from the availability of massive amounts of real-world data from low-cost sensors. What opportunities and challenges does this scenario present in your work?

Heckerman: In our case, the real world sensors are the countless health workers scattered throughout the world — especially in third-world areas where HIV is endemic — who are monitoring the health of the local inhabitants, taking blood samples for experimentation purposes, and offering treatment whenever possible.

HPCwire: What kind of HPC cluster do you have in place to do your work?

Kadie: The simulations require massive amounts of computation — sometimes as much as a CPU year of computation for a single run. Using Windows Compute Cluster Server 2003, we have racked up dozens of CPU years of results that are helping us further our understanding of the way HIV interacts with our immune system.

The HPC cluster is based on 25 IBM eServer 326 boxes, with two AMD Opteron processors per machine running at 2.6GHz. Of the eight new research programs we've got under way, six use .NET (C# and C++/CLI), one is in “R” and one in native C++.
 
HPCwire: In order to achieve the next big breakthrough, what advanced computing capabilities are on your wish list?

Kadie: We need to be able to grab more cycles from more computers in as painless a way possible. One of the key roadblocks here is trust. When moving beyond clusters to grids, we can no longer trust the machines on which we run our simulations, and the owners of those machines can't trust our software. A solution that makes computation seamless in this environment is critical.

HPCwire: How do you think your HIV vaccine design work will have progressed in five years time?

Heckerman: We're currently moving from using HPC to simulate the reactions to exposure to HIV in test tubes, to animal studies, particularly mice. Five years down the line we hope to be in the human phase, innoculating humans with an HIV vaccine simulating the — hopefully effective — response of their immune systems.

Our statistical analyses could also prove of potential benefit in looking at other viral infections where you see a lot of mutations. Hepatitis C, is an example where we might also be able to come up with an effective vaccine with the help of our HPC-based approach.

HPCwire: Taking a mile high view, what kind of the impact do you think your current work with HPC and computational statistics will have on the medical profession in general?

Heckerman: Experts are pointing to “personalized medicine” as the next breatkthrough in medical care. In the current medical paradigm, the patient becomes aware of certain symptoms and goes to the doctor. He or she is then prescribed treatments taught in medical schools — treatments almost invariably based on effectiveness in the general population rather than effectiveness in the individual patient. While such treatments often work, sometimes they don't and can have side effects that cause as many problems as they solve.

Personalized medicine, in contrast, involves assessing an individual's genetic predisposition to a particular disease or treatments. With such information, diseases could be treated before exacting enormous personal and social costs, and treatments that cause harmful side effects in a particular individual could be avoided. The HPC methods that we have been applying to the study of HIV can be used to tease out the relationship between genes, disease, and treatment and thus provide a basis for personalized medicine.

—–

Carl Kadie                              David Heckerman                                                             

Carl Kadie
                David Heckerman               

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire