Itanium Enthusiasm

By Nicole Hemsoth

October 6, 2006

This week, Linux-on-Itanium fans convened at the Gelato Itanium Conference and Expo (ICE) in Singapore to talk about platform issues and spotlight success stories. Cameron McNairy, Itanium Processor Architect and Principal Engineer, gave the opening keynote as well as presented a couple of other technical sessions on the microprocessor architecture. HPCwire asked McNairy about Itanium's role in high performance computing, the current maturity of Itanium-based systems, and what we can expect to see in the future.

HPCwire: What do you think the Itanium processor brings to the table that can't be found in other RISC (Power, Sparc) and CISC (x86) architectures?

McNairy: The Itanium processor brings three things to the table: choice, flexibility and performance. Itanium systems are supported by six different OSes, over 10,000 applications and eight major OEMs providing specialized systems for different market segments. Other RISC-based systems are proprietary and don't come close to offering the breadth of solutions that Itanium can. The end result is that Itanium OEMs can invest in hardware systems that deliver more options across a wider range of potential customers. For example, HP has offered 3 different RISC based systems — PA-RISC, Alpha, and NonStop — each with their own associated OS. While you could not get a NonStop kernel on PA-RISC or an OpenVMS on MIPs, HP's Itanium-based Integrity servers are available to serve NonStop, OpenVMS, Linux, Windows, and HPUX customers which is a huge advantage for HP. The dual-core Itanium 2 processor holds four world performance records including a score of 4230 SPEC_int_rate_base_2000, nearly triple the previous record.

HPCwire: What attributes of the Itanium make it particularly well-suited to HPC workloads?

McNairy: The direct support of large memory SMP systems makes Itanium an ideal architecture for the most demanding HPC workloads. With 50-bit physical addressability, Itanium is poised to address and manage petascale memory subsystems. As we enter the petascale era, much must be considered regarding data sets and programmability of HPC systems. Time to solution is of major consideration. Where the application space hasn't had time to accommodate explicit message passing algorithms, Itanium-based SMP systems offer a fast time to solution environment. Combined with its multi-level error containment architecture, Itanium-based SMP systems can avail petascale performance quickly and can have a sufficient MTBI to allow the calculations to actually complete. The HPC arena was one of the key design targets of both the Itanium architecture and the Itanium 2 implementations.

HPCwire: How do you think the system OEMs are doing in exploiting the potential of Itanium?

McNairy: Great, but there is more work to be done. We work closely with our customers and are often amazed at the interesting things they are doing with our processors. For example, the SGI system with large SMP, the NEC, HP and Unisys systems take full advantage of the reliability, scalability and availability features of the architecture. At the same time, we see some of them approaching the processor as a black box leading them to miss out on some of the key capabilities and configurations. Accordingly, we work closely with our customers to help them deliver the best Itanium platforms possible. For example, Intel provides tools and training, along with access to our architects to resolve questions and concerns, and to enable designs. Software is one key element to any system and poor software can make even the best system perform poorly. We see software as a critical link in the Itanium platform chain. In order to achieve critical software momentum and address key software issues, the Itanium Solutions Alliance was formed last year to broaden software development. The Alliance pools the efforts of multiple OEMs, OSVs, and ISVs for added momentum and critical mass.

HPCwire: How would you characterize the current maturity of software support for Itanium (compilers and other development tools, libraries, OS support, applications, etc.)? What are the biggest challenges here?

McNairy: I am really pleased with the maturity of software for Itanium, but again, there is more work to be done. There are over 10,000 key applications that support Itanium today. The compilers are maturing and continue to deliver performance and robustness for Itanium systems. Could software support be even better? Yes. Will it get better? Absolutely. This is a marathon, not a sprint. Software momentum is ramping quickly with multiple innovations coming soon. One of the biggest challenges is scaling operating systems to 32-, 64- and up to 128-processor systems. We want broader focus from the software industry because of the opportunity that exists. We continue to work with this industry to extend their focus.

HPCwire: Can you talk a little bit about future Itanium features and their significance?

McNairy: In the future, Intel is planning on providing new features for the high-end market segment such as new reliability and availability features, multi-core processors and even higher speed interconnects. We will continue to work very closely with hardware and software vendors to better understand their needs while investigating ways to incorporate that input and knowledge into future designs.

HPCwire: A bit of a philosophical question here. There's been increasing talk in the HPC community about heterogeneous systems in which future platforms will be populated by a variety of specialized processors — GPUs, Cell processor, FPGAs, vector processors, FP co-processors, etc. — where each processor has the ability to deal with certain types of code more efficiently than a general-purpose processor. Do you think this is a natural evolution of computer architectures? And if so, where does this leave general-purpose scalar/FP processors?

McNairy: The answer depends on the ability to simplify the transition such that the return on investment is huge. Hardware is certainly easier to change than software and software would need to change to support special program/non-general purpose compute enhancement devices effectively. Thus, I see the current niche continuing — specialty processors abstracted by a dedicated library that the application writer does not know about — until we change the way we think about computational problems and the way we put algorithms to software. I am personally very excited about special purpose computing elements (my Masters thesis was on FPGA FP acceleration using a systolic design). I think the implementation is simple, the challenge lies in successfully abstracting the hardware such that the cost is low enough to produce a return on investment. Will user defined instructions/capabilities make it onto the processor? Certainly, but only in limited use cases until we address the software problem.

—–

Cameron McNairy is a Principal Engineer and an Intel Architect for the Montecito program. Previous to Montecito, Cameron was a micro-architect for the Itanium 2 processor, contributing to its design and final validation. He plans to focus on performance, RAS (reliability, availability, serviceability), and system interface issues in the design of future IPF products. He came to the Itanium 2 team soon after its inception from performance work on the first Itanium processor. Cameron received a BSEE and an MSEE from Brigham Young University. He is a member of the Institute of Electrical and Electronics Engineers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, remain in first and second place. The only new entrants in t Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX-1 compute power in an air conditioned, water-cooled ScaleMa Read more…

By Doug Black

HPE and NREL Collaborate on AI Ops to Accelerate Exascale Efficiency and Resilience

November 18, 2019

The ever-expanding complexity of high-performance computing continues to elevate the concerns posed by massive energy consumption and increasing points of failure. Now, the AI Ops collaboration between Hewlett Packard En Read more…

By Oliver Peckham

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutting for the Expo Hall opening is Monday at 6:45pm, with the Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Exascale Computing Project (ECP), Diachin is also... Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This