Leapfrogging the Petaflop Race

By Herbert Wenk

October 6, 2006

An undeclared race towards petaflop computing is in progress between the United States and Japan — a race which is being closely watched by the global HPC community. Right now the scales lean towards the U.S., which leads with its latest IBM Blue Gene/L computer, a 280 teraflops (sustained) system. The IBM machine took the number one spot from Japan's Earth Simulator in 2004, which had dominated the supercomputing charts since 2002.

Experts are expecting the first petaflop system within the next couple of years. The bets are that it will be a follow-on of the IBM design. However, Japan is not to be discounted. As the first and only country having specified supercomputers as “Key Technology of National Importance,” Japan is aiming at becoming the world leader in simulation capabilities in areas covering nano-science, life science, climate/geo-science, physical science and engineering. Unburdened by the responsibility for nuclear stockpile stewardship, it can focus its research and financing on providing a petaflop platform for real-world applications.

These efforts are harnessed by the RIKEN institute, which together with leading industries and universities has set up an organization that targets the development of a 10 petaflop system within the next six years. On September 19th, RIKEN issued a press release which officially declared these intentions. Back in April 2006, a research collaboration started in Japan to define the best possible architecture for such a system, based on a benchmark consisting of 21 real-world applications. Using these benchmarks, two candidates for such an architecture have now been selected for further design evaluation. They have been put forward by Fujitsu Ltd. and a team formed by NEC Corporation and Hitachi, Ltd. The results of this final evaluation will be available at the end of this fiscal year and will become the basis of the implementation. On September 19th and 20th, RIKEN held a seminar at which the announcement was made.

Taking advantage of a visit to Bonn, Germany to give a keynote lecture at a scientific conference, Dr. Mitsuyasu Hanamura, who heads the applications software group within the RIKEN Next-Generation Supercomputer R&D Center, took part in a press briefing organized by the NEC Europe Computing & Communication Research lab in St. Augustin, Germany. Dr. Hanamura, gave a technical summary of this subject.

The Next-Generation Supercomputer Project, as it is called within Japan, is tasked to support six distinct goals:

  • Achieve a “quantum” jump in knowledge, discovery and creation on topics such as the Milky Way formation process and planet forming.
  • Pursue breakthroughs in advanced science and engineering, such as nuclear reactor analysis, laser reaction analysis and engine design.
  • Develop predictive models of the interaction of human development and the environments, such as the influence of the El Nino phenomenon.
  • Support Japan in its goal to become an innovation leader and strengthen its economy and industries in areas such as nano-technology and nano-engineering.
  • Develop tailor-made solutions for medical care and drug design — at the level of the genome, cell and organs.
  • Make Japan the world's safest nation, by predicting and simulating the effects from natural disasters.

To reach these goals, the new machine will enable access for researchers and industries through the cyber science infrastructure framework of the National Research Grid Initiative (NAREGI) project initiated by the National Institute of Informatics (NII).

According to Dr. Hanamura, because of prohibitive power consumption, the new class of supercomputers will need technology breakthroughs. Based on reasonable projections until 2010 on compute-power per CPU, efficiency-factors and power consumption, as well as the need to support existing codes, he gave an estimate for a hypothetical one petaflop (sustained) system:
 
  CPU Type     Peak Perf.    Efficiency     Est. Power   SW Support
  ——–     ———-    ———-     ———-   ———-

  Vector       63 GF/CPU        0.3          47   MW        good

  Scalar       30 GF/CPU        0.1          40   MW        good

  Special-       n.a.           0.5          ~0.5 MW        poor
  Purpose    

This data clearly points towards a mixed hardware environment in order to be able to reach both high performance and the support of existing application code. As an example for special purpose hardware he pointed to RIKEN's MD-GRAPE3 machine, a special-purpose computer geared for molecular dynamics and multi-body calculations. In May 2006, a system based on this chip already achieved a performance level of over one petaflop. Therefore Dr. Hanamura foresees an architecture which combines scalar nodes, vector computers and special purpose computers into a single system. As multi-scale simulations often need to consider both particle-based and domain-based effects, which lend themselves naturally to different computing models, this new architecture should be well suited here.

The tentative schedule of the project is

  • Start operations: End of FY2010
  • Full completion: End of FY2011

Lead by Dr. Tadashi Watanabe, the father of NEC's SX family of supercomputers and Japan's Earth Simulator, the Next-Generation Supercomputer Center at RIKEN has started a new round in the HPC race. Boosted by a government grant, estimated at 750 million Euros, this development is expected to boost the competitiveness of Japan's IT industry and advance the acceptance of high performance computing in more and more industries.

—–

With 25 years of experience in IT, Herbert Wenk ([email protected]) is working as a consultant and technical journalist in Germany.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire