Why Compromise?

By Gilad Shainer, MSc.

October 6, 2006

During the 1990s, universities like Princeton and Cornell conducted research in memory mapped communication (SHRIMP and U-Net). The results drove Compaq (now HP), Intel and Microsoft into drafting a new programming interface called Virtual Interface Architecture (VIA) in 1997. VIA was the foundation for two new serial, high-speed, connectivity proposals. The first proposal, named Future I/O, was driven by Compaq, HP and IBM. The second proposal, named Next Generation I/O, was driven by Intel, Microsoft, and Sun. In 1999, the two initiatives determined they had a common goal and agreed to merge into a single development effort for an optimal interconnect architecture to connect servers and storage. This architecture development was known as System I/O. In October 2000, the first specification of this new interconnect architecture was released, which is now known today as InfiniBand.

One of the driving forces for this new initiative was to find a solution for the most common issues associated with interconnect architectures — the bottlenecks. There are three distinct problems that slow down data transfers from or to the host and involve processing overhead: context transition from application to the kernel and back, protocol processing, and memory copy.

The first and the second are addressed by off-loading protocol processing from the CPU for saving its resources and saving context switching from application to the kernel processing. If the CPU is busy moving data and handling network protocol processing, it is unable to perform computational work, and the overall productivity of the system is severely degraded. InfiniBand adapters have the capability to off-load all the processing of the transport layers.

 Memory Copy
The memory copy overhead includes the resources required to copy data buffers from the network device to the kernel memory and then from the kernel memory to the application memory. This approach requires multiple memory accesses before the data is placed in its final destination. While it is not a major problem for small data transfers, it is a big problem for larger data transfers. This is where zero-copy capabilities eliminate memory bandwidth bottleneck without involving the CPU in the network data transfer. Mellanox InfiniBand adapters provides zero-copy capabilities with both Send/Receive and Remote Direct Memory Access (RDMA) semantics.

In this article, a discussion on RDMA versus Send/Receive and the difference between interconnect and application semantics will be outlined. Must we choose one semantic over the other or are both essential to provide the application the desired performance, flexibility and scalability now and in the future?

RDMA Semantics

RDMA (Remote Direct Memory Access) usually refers to three features: Remote direct memory access (Remote DMA), asynchronous work queues, and kernel bypass. Remote DMA is the ability of the network adapter to place data directly to the application memory. RDMA is also known as a “one-sided” operation in the sense that the incoming messages are being processed by the adapter without involving the host CPU. The data comes with information about where it's supposed to go, and the receive side does not need to interfere with the data placement — a.k.a. direct placement.

Zero-copy flow

Asynchronous work queue is the common interface of RDMA capable adapters between the adapter and the software, also known as verbs interface. The queue objects named queue pair (QP), includes a pair of work queues: a send queue and a receive queue, and completion queues (CQ). The user post an operation on one of the work queues, then the operation executes asynchronously, and once it is done, the adapter places work completion information in the CQ. Operating asynchronously like this makes it easier to overlap computation and communication.

Kernel bypass is typically an RDMA capable adapter ability. It allows user space processes to do fast-path operations (posting work requests and retrieving work completions) directly with the hardware without involving the kernel. Saving system call overhead is a big advantage, especially for high-performance, latency-sensitive applications.

RDMA Capability Does Not Mean It Is the Only Capability

InfiniBand supports both message semantics (a.k.a. Send/Receive) and RDMA. RDMA operations include RDMA Write (one node writes data directly into a memory buffer of a remote node), RDMA Read (one node reads data directly from a memory buffer of a remote node) and RDMA Atomics (combined operation of reading a memory location, optionally the value, and changing/updating the value if necessary).

With Send/Receive (also know as two sided-operations) operations, the source node sends a message and destination node indicates where the data is going to be placed. While in RDMA operation, the source side has all the necessary information on the target placement of the data. For Send/Receive operations, the two sides need to take part in the data transfer.

Both InfiniBand RDMA and Send/Receive semantics can avoid memory copy (also called zero-copy operations). For TCP/IP networks the case is quite different, where iWARP is essential for avoiding memory copy.

Data Transfer Semantics

InfiniBand is capable of placing data directly to the user or kernel space by using RDMA or Send/Receive operations. In both cases, the destination's adapter figures the location of the data in host memory, either according to the data included in the message for RDMA operations, or according to the appropriate receive work request set by the destination node. The destination buffer can be in the user space or the kernel space.

The difference between RDMA and Send/Receive is the way the destination node finds the host memory destination address for the incoming data. RDMA messages carry the information and therefore do not need the destination CPU cycles for the data transfer. Send/Receive messages do not carry this information and the destination node CPU needs to post receive work requests for the data placement. Lack of receive WQE at the time an incoming message arrives is handled by the adapter (with pure hardware mechanisms without any software involvement) and does not cause a fatal error. A notification is sent back to notify the sender that the receiver is not ready for data transfer. Furthermore, the hardware resources that are needed for RDMA are the same as for Send/Receive.

When comparing the raw performance of Send/Receive and RDMA semantics on a specific interconnect, different architectures will show different results, but this is related to the adapter implementation. Mellanox InfiniBand implementations show the same bandwidth numbers, but there is a gap of several hundreds nanoseconds in favor of RDMA operations. On the other hand, Mellanox is about to introduce a new HCA architecture where Send/Receive latency will match those of RDMA. Myrinet-GM can show a difference of up to 10 percent in favor of Send/Receive, and the new generation Myrinet-MX does not officially support RDMA. QLogic InfiniPath does not have the capability of native RDMA and therefore its RDMA software implementation demonstrate higher latency than Send/Receive.

RDMA and Send/Receive create the perfect match for connecting servers and storage. There is no need to compromise and use only one option for every need, when both are available in the same adapter. The decision on which option to use at a given time or maybe even both, and it is up to the application to decide what is more suitable depends on the application. RDMA is typically associated with large data movement (as it does not require the remote side to be involved) and Send/Receive with small data transfers. In fact, RDMA is being used in many other ways, in order to improve and optimized application performance.

Message Passing Interface (MPI)

One needs to have a distinction between the native adapter RDMA and Send/Receive semantics and the application RDMA and Send/Receive ones. You can execute MPI Send/Receive operations with either InfiniBand RDMA or Send/Receive operations. The device-specific driver uses the lowest latency options available. Thus, Myrinet will use Send/Receive and Mellanox, RDMA. QLogic has a proprietary interface to the adapter and therefore uses its proprietary semantics.

MPI protocols can be broadly classified into two types: Eager and Rendezvous. In the Eager protocol, the sender sends the entire messages to the receiver, which needs to provide sufficient buffers to handle those incoming messages. This protocol has minimal startup overhead and is typically used for small messages. Send/Receive operations are the common implementation. The destination MPI layer controls the Eager buffers allocation and performs the MPI tag matching. MPI tag matching can be done by the adapter (but this is not common), by a kernel process or by a user process (MVAPICH). In this protocol, the MPI is responsible for the message copy from the eager buffers to the application buffers. The MPI Send/Receive operation can be implemented with InfiniBand RDMA or Send/Receive, as one can RDMA the data to the eager buffers (or any buffer). It is a matter of the low-level MPI implementation.

The Rendezvous protocol is typically used for large data transfers. Since the message is too large to be handled by the eager buffers, the sender and the receiver negotiate the buffer availability prior to the actual transfer. It is critical to avoid unnecessary message copies for higher performance. Since the buffer location is known before the data transfer, RDMA operations are the perfect match. RDMA Write or Read based approaches can totally eliminate intermediate copies. RDMA Read can increase the computation and communication overlap for higher total system efficiency. The usage of RDMA Read will also save interrupts on the sender side, reducing the sender side CPU overhead.

Dhabaleswar K. Panda et al., the Ohio State university, presented the benefits of using RDMA Read operations in a paper “RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits,” Symposium on Principles and Practice of Parallel Programming (PPOPP'06), March 29-31, 2006, Manhattan, New York City. In the paper, Dhabaleswar K. Panda has show how new designs can achieve nearly complete computation and communication overlap.
 

RDMA Read Operations

MPI Collective Operations

In another paper, “High Performance RDMA Based All-to-all Broadcast for InfiniBand Clusters” presented at the International Conference on High Performance Computing (HiPC 2005), December 18-21, 2005, Goa, India, D. K. Panda et al. showed the advantages of using RDMA for collective operations. Collective operations are being used in many applications such as matrix multiplication, lower and upper triangle factorization, solving differential equations, and basic linear algebra operations. RDMA offers memory semantics which allow MPI Collective operations to be efficiently implemented to achieve lower latency (37 percent improvement as shown in the paper) and greater scalability.

 

Douglas Doerfler and Ron Brightwell from Sandia National Laboratories have created a new MPI benchmark for measuring the application availability as an indication for the Send/Receive overlap capabilities. The paper named “Measuring MPI Send and Receive Overhead and Application Availability in High Performance Network Interfaces” was published at the EuroPVM/MPI, September 2006. The results in the paper do not represent the adapter's behavior but rather the software and the MPI driver implementation of the MPI tag matching (which has nothing to do with the adapter) and partitioning between different threads. The main overhead for MPI is the tag matching and InfiniBand MPIs, such as MVAPICH, do the matching with a user space process. As a result, the overhead will increase once the MPI shifts from Eager mode to Rendezvous. Doing the tag matching in a kernel process, like other adapters, will still require the same resources, but will be hidden from the user space. There are several approaches that can be used instead of the current software implementation, such as a separate thread or kernel module that can deal with tag matching while the main thread is doing computation, etc.

Memory Registration

From a certain message size, the Eager model is too expensive and the zero-copy approach provides superior performance results. Zero-copy Rendezvous requires the destination buffers to be registered prior to the data transfer. There is no debate on the fact that memory registration and deregistration has some overhead in terms of CPU overhead which is determined by the driver implementation. Dr. Loïc Prylli from Myricom measured the tradeoff of doing registration and deregistration for each buffer transfer, versus memory copies.

Registration and Deregistration Versus Memory Copies

Without using optimization for reducing the memory registration and deregistration overhead, discussed later in the paper, it is clear to see that zero copy offsets the cost of registration and deregistration as expected from ~32 KB message size for cache hot mode (marked as A point) and ~16 KB for cache cold mode (marked as B point). Zero-copy is critical for preserving memory bandwidth and CPU utilization, as you don't want the CPU to copy those large messages.

Registration cache is one of the common methods used to dramatically reduce the registration and deregistration cache. Winsocks Direct (WSD) cost to register memory per operations versus zero-copy threshold is around 9 KB, meaning above 9 KB, memory copy operations become more expensive than zero-copy. Mellanox and Myricom have ways to optimize the registration cost with specific adapter support so that the overhead is cheaper than the memory copy for smaller messages. It's no surprise that Mellanox named this feature FMR — fast memory registration.

Furthermore, the new verbs developed for the InfiniBand specification 1.2 (for example Fast Registration Memory Request) and iWARP include optimizations for registration and deregistration, and target to reduce the threshold to 1 KB of message.

Send/Receive Optimizations

The InfiniBand specification was developed for creating a general I/O technology allowing a single I/O fabric to replace multiple existing fabrics. Therefore, it was designed to provide Send/Receive, as well as RDMA capabilities. To enable OS bypass, InfiniBand defines the concept a Queue Pair (QP) as the interface between the host and the adapter. Two-sided Send/Receive operations are initiated by posting a send WQE on a QP's send queue, which specifies the sender local buffer. The remote process post a receive WQE on the corresponding receive queue which specifies a local buffer address to be used as the destination.

When operating in large clusters, there is a need to reduce the memory footprint, and to keep it constant regardless of the number of processes. InfiniBand defines the concept of Shared Receive Queue (SRQ), so that receive resources can be shared among multiple endpoints. The following results from “InfiniBand Scalability in Open MPI,” Shipman et al., IPDPS, May 2006, demonstrate the expected results of SRQ implementation in Open MPI and InfiniBand's great scalability.

SRQ Implementation in Open MPI

Dhabaleswar K. Panda has announced MVAPICH (MVAPICH 0.9.7) support of SRQ on March 14th, 2006, and has presented the testing results at the IPDPS 2006 conference, as shown below. The conclusion is exactly the same.

MVAPICH (MVAPICH 0.9.7) Support of SRQ


Multiple Applications Support

InfiniBand differs from Myrinet, Quadrics and QLogic InfiniPath, as it is designed as a general high performance I/O fabric with support for multiple applications in a single wire. InfiniBand drivers provide interfaces not just for MPI applications but also for TCP, socket and storage applications. The storage interfaces include block storage such as SRP, iSER and file systems such as Lustre, GPFS, CFS and NFS.

NFS, Network File System, allows a system to share directories and files with others over a network. By using NFS, users and applications can access files on remote systems almost as if they were local files. A common NFS storage configuration is a pool of NFS filers that keep files for a large array of “stateless” application servers. The application servers do not have any dedicated storage and are not responsible for providing access to any storage, therefore a failure of an application server does not block access to files. Furthermore, application processing capacity can be increased simply by adding new servers.

NFS-Over-RDMA

The benefits of NFS-over-RDMA are not simply “faster” NFS. Applications that already use NFS will benefit from the increased data bandwidth, reduced CPU overhead, direct I/O (zero copy) and lower latency. If NFS-over-RDMA can match the performance of “direct attach” or SAN-connected file systems, than NFS is no longer a bottleneck, and we can appreciate the file sharing benefits of NFS more widely, even in applications that previously required “raw” disk access.

Traditional Model Vs. RDMA Model

Helen Y. Chen, Sandia National Laboratories, et al. compared NFS to NFS-over-RDMA in her presentation “Early Experiences with NFS-over-RDMA,” at The Commodity Cluster Computing Symposium in Baltimore MD, July 25-27, 2006.

Comparison of NFS to NFS-over-RDMA

The client and the server CPU efficiency were compared between the traditional mode and the RDMA mode. The CPU per MB of transfer is being calculated for the server and the client by (dt)*SUM( percentCPU/100/file-size). For the client side, NFS-over-RDMA shows 61.86 percent higher efficiency for writes and 75.47 percent more efficiency for reads. The server side shows 68.10 percent higher efficiency for writes and 84.70 percent higher efficiency for reads. On the scalability side, NFS/RDMA incurred approximately half of the CPU overhead and for approximately half of the duration, but delivered 4 times the aggregate throughput compared to NFS.

No Need To Compromise

The choice between Send/Receive and RDMA is driven by the applications. There are cases where Send/Receive is the preferred option and other cases where RDMA is the natural choice. Zero-copy is one of those cases. Indeed, there is some overhead for registration and deregistration memory, but the message size point where is it much more beneficial to use the zero-copy approach is decreasing to hundreds of bytes, with the new IBTA and IETF definitions for InfiniBand and iWARP. Furthermore, RDMA was proven to enhance performance in other cases, such as MPI collective operations, overlapping, checkpointing, atomic access to shared memory data structures, storage applications, etc.

The Send/Receive and RDMA application interfaces to the adapters for InfiniBand and iWARP are open sourced and are constantly optimized under the auspices of the OpenFabrics Alliance. Helen Chen provided a descriptive diagram of the driver for InfiniBand and iWARP in her paper, showing the variety of the common application program interfaces. Moreover, since the drivers are open sourced, it is simple to modify the code for other propriety applications or to enhance the usage of RDMA or Send/Receive.

The OpenFabrics consortium includes all the major InfiniBand and iWARP companies, includes AMD, Cisco, Dell, IBM, Intel, LSI Logic, Oracle, Sun, the major USA labs and others, showing the wide-ranging adoption for RDMA technology.

OpenFabrics Diagram

For storage interconnect applications, the situation is different when compared to the MPI compute applications where RDMA and Send/Receive are used together. When the application requires large blocks of data to be moved, RDMA is the only option that provides the required performance, scalability and CPU overhead. It is common to demand optimal storage I/O and high compute I/O in for the same application. One example is when file reads and writes happen before and after the computational periods for the purpose of check pointing and restart mechanisms, etc. In this example, the ability to read and write large quantities of data without interrupting the CPUs is essential, especially when cluster size increases.

RDMA and Send/Receive in the same network provide the user with a variety of tools that are essential for achieving the best application performance and to be able to utilize the same network for multiple tasks, such as compute, storage and management. In the last decade, the industry had made huge progress, both in the network specification, and in the programming interface. With a wide variety of APIs and market adoption, RDMA has completed the missing parts that Send/Receive could not provide, and when combined together, they become the best, flexible, high-performance solution without compromise.

The author would like to thank Diego Crupnicoff, Michael Kagan, Dhabaleswar K. Panda, Sayantan Sur and Matthew Jon Koop for their input during reviews of this article.

—–

Gilad Shainer is a senior technical marketing manager at Mellanox technologies focusing on high performance computing. He joined Mellanox Technologies in 2001 to develop Mellanox's InfiniHost PCI-X Host Channel Adapter (HCA) device and later led the development of Mellanox's InfiniHost III Ex PCI Express HCA device. Gilad Shainer holds a MSc. degree (2001, Cum Laude) and a BSc. degree (1998, Cum Laude) in Electrical Engineering from the Technion Institute of Technology in Israel. He is also a member of the PCISIG PCI-X and PCI Express Working Groups and has contributed to the definition of the PCI-X 2.0 specifications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This