Why Compromise?

By Gilad Shainer, MSc.

October 6, 2006

During the 1990s, universities like Princeton and Cornell conducted research in memory mapped communication (SHRIMP and U-Net). The results drove Compaq (now HP), Intel and Microsoft into drafting a new programming interface called Virtual Interface Architecture (VIA) in 1997. VIA was the foundation for two new serial, high-speed, connectivity proposals. The first proposal, named Future I/O, was driven by Compaq, HP and IBM. The second proposal, named Next Generation I/O, was driven by Intel, Microsoft, and Sun. In 1999, the two initiatives determined they had a common goal and agreed to merge into a single development effort for an optimal interconnect architecture to connect servers and storage. This architecture development was known as System I/O. In October 2000, the first specification of this new interconnect architecture was released, which is now known today as InfiniBand.

One of the driving forces for this new initiative was to find a solution for the most common issues associated with interconnect architectures — the bottlenecks. There are three distinct problems that slow down data transfers from or to the host and involve processing overhead: context transition from application to the kernel and back, protocol processing, and memory copy.

The first and the second are addressed by off-loading protocol processing from the CPU for saving its resources and saving context switching from application to the kernel processing. If the CPU is busy moving data and handling network protocol processing, it is unable to perform computational work, and the overall productivity of the system is severely degraded. InfiniBand adapters have the capability to off-load all the processing of the transport layers.

 Memory Copy
The memory copy overhead includes the resources required to copy data buffers from the network device to the kernel memory and then from the kernel memory to the application memory. This approach requires multiple memory accesses before the data is placed in its final destination. While it is not a major problem for small data transfers, it is a big problem for larger data transfers. This is where zero-copy capabilities eliminate memory bandwidth bottleneck without involving the CPU in the network data transfer. Mellanox InfiniBand adapters provides zero-copy capabilities with both Send/Receive and Remote Direct Memory Access (RDMA) semantics.

In this article, a discussion on RDMA versus Send/Receive and the difference between interconnect and application semantics will be outlined. Must we choose one semantic over the other or are both essential to provide the application the desired performance, flexibility and scalability now and in the future?

RDMA Semantics

RDMA (Remote Direct Memory Access) usually refers to three features: Remote direct memory access (Remote DMA), asynchronous work queues, and kernel bypass. Remote DMA is the ability of the network adapter to place data directly to the application memory. RDMA is also known as a “one-sided” operation in the sense that the incoming messages are being processed by the adapter without involving the host CPU. The data comes with information about where it's supposed to go, and the receive side does not need to interfere with the data placement — a.k.a. direct placement.

Zero-copy flow

Asynchronous work queue is the common interface of RDMA capable adapters between the adapter and the software, also known as verbs interface. The queue objects named queue pair (QP), includes a pair of work queues: a send queue and a receive queue, and completion queues (CQ). The user post an operation on one of the work queues, then the operation executes asynchronously, and once it is done, the adapter places work completion information in the CQ. Operating asynchronously like this makes it easier to overlap computation and communication.

Kernel bypass is typically an RDMA capable adapter ability. It allows user space processes to do fast-path operations (posting work requests and retrieving work completions) directly with the hardware without involving the kernel. Saving system call overhead is a big advantage, especially for high-performance, latency-sensitive applications.

RDMA Capability Does Not Mean It Is the Only Capability

InfiniBand supports both message semantics (a.k.a. Send/Receive) and RDMA. RDMA operations include RDMA Write (one node writes data directly into a memory buffer of a remote node), RDMA Read (one node reads data directly from a memory buffer of a remote node) and RDMA Atomics (combined operation of reading a memory location, optionally the value, and changing/updating the value if necessary).

With Send/Receive (also know as two sided-operations) operations, the source node sends a message and destination node indicates where the data is going to be placed. While in RDMA operation, the source side has all the necessary information on the target placement of the data. For Send/Receive operations, the two sides need to take part in the data transfer.

Both InfiniBand RDMA and Send/Receive semantics can avoid memory copy (also called zero-copy operations). For TCP/IP networks the case is quite different, where iWARP is essential for avoiding memory copy.

Data Transfer Semantics

InfiniBand is capable of placing data directly to the user or kernel space by using RDMA or Send/Receive operations. In both cases, the destination's adapter figures the location of the data in host memory, either according to the data included in the message for RDMA operations, or according to the appropriate receive work request set by the destination node. The destination buffer can be in the user space or the kernel space.

The difference between RDMA and Send/Receive is the way the destination node finds the host memory destination address for the incoming data. RDMA messages carry the information and therefore do not need the destination CPU cycles for the data transfer. Send/Receive messages do not carry this information and the destination node CPU needs to post receive work requests for the data placement. Lack of receive WQE at the time an incoming message arrives is handled by the adapter (with pure hardware mechanisms without any software involvement) and does not cause a fatal error. A notification is sent back to notify the sender that the receiver is not ready for data transfer. Furthermore, the hardware resources that are needed for RDMA are the same as for Send/Receive.

When comparing the raw performance of Send/Receive and RDMA semantics on a specific interconnect, different architectures will show different results, but this is related to the adapter implementation. Mellanox InfiniBand implementations show the same bandwidth numbers, but there is a gap of several hundreds nanoseconds in favor of RDMA operations. On the other hand, Mellanox is about to introduce a new HCA architecture where Send/Receive latency will match those of RDMA. Myrinet-GM can show a difference of up to 10 percent in favor of Send/Receive, and the new generation Myrinet-MX does not officially support RDMA. QLogic InfiniPath does not have the capability of native RDMA and therefore its RDMA software implementation demonstrate higher latency than Send/Receive.

RDMA and Send/Receive create the perfect match for connecting servers and storage. There is no need to compromise and use only one option for every need, when both are available in the same adapter. The decision on which option to use at a given time or maybe even both, and it is up to the application to decide what is more suitable depends on the application. RDMA is typically associated with large data movement (as it does not require the remote side to be involved) and Send/Receive with small data transfers. In fact, RDMA is being used in many other ways, in order to improve and optimized application performance.

Message Passing Interface (MPI)

One needs to have a distinction between the native adapter RDMA and Send/Receive semantics and the application RDMA and Send/Receive ones. You can execute MPI Send/Receive operations with either InfiniBand RDMA or Send/Receive operations. The device-specific driver uses the lowest latency options available. Thus, Myrinet will use Send/Receive and Mellanox, RDMA. QLogic has a proprietary interface to the adapter and therefore uses its proprietary semantics.

MPI protocols can be broadly classified into two types: Eager and Rendezvous. In the Eager protocol, the sender sends the entire messages to the receiver, which needs to provide sufficient buffers to handle those incoming messages. This protocol has minimal startup overhead and is typically used for small messages. Send/Receive operations are the common implementation. The destination MPI layer controls the Eager buffers allocation and performs the MPI tag matching. MPI tag matching can be done by the adapter (but this is not common), by a kernel process or by a user process (MVAPICH). In this protocol, the MPI is responsible for the message copy from the eager buffers to the application buffers. The MPI Send/Receive operation can be implemented with InfiniBand RDMA or Send/Receive, as one can RDMA the data to the eager buffers (or any buffer). It is a matter of the low-level MPI implementation.

The Rendezvous protocol is typically used for large data transfers. Since the message is too large to be handled by the eager buffers, the sender and the receiver negotiate the buffer availability prior to the actual transfer. It is critical to avoid unnecessary message copies for higher performance. Since the buffer location is known before the data transfer, RDMA operations are the perfect match. RDMA Write or Read based approaches can totally eliminate intermediate copies. RDMA Read can increase the computation and communication overlap for higher total system efficiency. The usage of RDMA Read will also save interrupts on the sender side, reducing the sender side CPU overhead.

Dhabaleswar K. Panda et al., the Ohio State university, presented the benefits of using RDMA Read operations in a paper “RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits,” Symposium on Principles and Practice of Parallel Programming (PPOPP'06), March 29-31, 2006, Manhattan, New York City. In the paper, Dhabaleswar K. Panda has show how new designs can achieve nearly complete computation and communication overlap.
 

RDMA Read Operations

MPI Collective Operations

In another paper, “High Performance RDMA Based All-to-all Broadcast for InfiniBand Clusters” presented at the International Conference on High Performance Computing (HiPC 2005), December 18-21, 2005, Goa, India, D. K. Panda et al. showed the advantages of using RDMA for collective operations. Collective operations are being used in many applications such as matrix multiplication, lower and upper triangle factorization, solving differential equations, and basic linear algebra operations. RDMA offers memory semantics which allow MPI Collective operations to be efficiently implemented to achieve lower latency (37 percent improvement as shown in the paper) and greater scalability.

 

Douglas Doerfler and Ron Brightwell from Sandia National Laboratories have created a new MPI benchmark for measuring the application availability as an indication for the Send/Receive overlap capabilities. The paper named “Measuring MPI Send and Receive Overhead and Application Availability in High Performance Network Interfaces” was published at the EuroPVM/MPI, September 2006. The results in the paper do not represent the adapter's behavior but rather the software and the MPI driver implementation of the MPI tag matching (which has nothing to do with the adapter) and partitioning between different threads. The main overhead for MPI is the tag matching and InfiniBand MPIs, such as MVAPICH, do the matching with a user space process. As a result, the overhead will increase once the MPI shifts from Eager mode to Rendezvous. Doing the tag matching in a kernel process, like other adapters, will still require the same resources, but will be hidden from the user space. There are several approaches that can be used instead of the current software implementation, such as a separate thread or kernel module that can deal with tag matching while the main thread is doing computation, etc.

Memory Registration

From a certain message size, the Eager model is too expensive and the zero-copy approach provides superior performance results. Zero-copy Rendezvous requires the destination buffers to be registered prior to the data transfer. There is no debate on the fact that memory registration and deregistration has some overhead in terms of CPU overhead which is determined by the driver implementation. Dr. Loïc Prylli from Myricom measured the tradeoff of doing registration and deregistration for each buffer transfer, versus memory copies.

Registration and Deregistration Versus Memory Copies

Without using optimization for reducing the memory registration and deregistration overhead, discussed later in the paper, it is clear to see that zero copy offsets the cost of registration and deregistration as expected from ~32 KB message size for cache hot mode (marked as A point) and ~16 KB for cache cold mode (marked as B point). Zero-copy is critical for preserving memory bandwidth and CPU utilization, as you don't want the CPU to copy those large messages.

Registration cache is one of the common methods used to dramatically reduce the registration and deregistration cache. Winsocks Direct (WSD) cost to register memory per operations versus zero-copy threshold is around 9 KB, meaning above 9 KB, memory copy operations become more expensive than zero-copy. Mellanox and Myricom have ways to optimize the registration cost with specific adapter support so that the overhead is cheaper than the memory copy for smaller messages. It's no surprise that Mellanox named this feature FMR — fast memory registration.

Furthermore, the new verbs developed for the InfiniBand specification 1.2 (for example Fast Registration Memory Request) and iWARP include optimizations for registration and deregistration, and target to reduce the threshold to 1 KB of message.

Send/Receive Optimizations

The InfiniBand specification was developed for creating a general I/O technology allowing a single I/O fabric to replace multiple existing fabrics. Therefore, it was designed to provide Send/Receive, as well as RDMA capabilities. To enable OS bypass, InfiniBand defines the concept a Queue Pair (QP) as the interface between the host and the adapter. Two-sided Send/Receive operations are initiated by posting a send WQE on a QP's send queue, which specifies the sender local buffer. The remote process post a receive WQE on the corresponding receive queue which specifies a local buffer address to be used as the destination.

When operating in large clusters, there is a need to reduce the memory footprint, and to keep it constant regardless of the number of processes. InfiniBand defines the concept of Shared Receive Queue (SRQ), so that receive resources can be shared among multiple endpoints. The following results from “InfiniBand Scalability in Open MPI,” Shipman et al., IPDPS, May 2006, demonstrate the expected results of SRQ implementation in Open MPI and InfiniBand's great scalability.

SRQ Implementation in Open MPI

Dhabaleswar K. Panda has announced MVAPICH (MVAPICH 0.9.7) support of SRQ on March 14th, 2006, and has presented the testing results at the IPDPS 2006 conference, as shown below. The conclusion is exactly the same.

MVAPICH (MVAPICH 0.9.7) Support of SRQ


Multiple Applications Support

InfiniBand differs from Myrinet, Quadrics and QLogic InfiniPath, as it is designed as a general high performance I/O fabric with support for multiple applications in a single wire. InfiniBand drivers provide interfaces not just for MPI applications but also for TCP, socket and storage applications. The storage interfaces include block storage such as SRP, iSER and file systems such as Lustre, GPFS, CFS and NFS.

NFS, Network File System, allows a system to share directories and files with others over a network. By using NFS, users and applications can access files on remote systems almost as if they were local files. A common NFS storage configuration is a pool of NFS filers that keep files for a large array of “stateless” application servers. The application servers do not have any dedicated storage and are not responsible for providing access to any storage, therefore a failure of an application server does not block access to files. Furthermore, application processing capacity can be increased simply by adding new servers.

NFS-Over-RDMA

The benefits of NFS-over-RDMA are not simply “faster” NFS. Applications that already use NFS will benefit from the increased data bandwidth, reduced CPU overhead, direct I/O (zero copy) and lower latency. If NFS-over-RDMA can match the performance of “direct attach” or SAN-connected file systems, than NFS is no longer a bottleneck, and we can appreciate the file sharing benefits of NFS more widely, even in applications that previously required “raw” disk access.

Traditional Model Vs. RDMA Model

Helen Y. Chen, Sandia National Laboratories, et al. compared NFS to NFS-over-RDMA in her presentation “Early Experiences with NFS-over-RDMA,” at The Commodity Cluster Computing Symposium in Baltimore MD, July 25-27, 2006.

Comparison of NFS to NFS-over-RDMA

The client and the server CPU efficiency were compared between the traditional mode and the RDMA mode. The CPU per MB of transfer is being calculated for the server and the client by (dt)*SUM( percentCPU/100/file-size). For the client side, NFS-over-RDMA shows 61.86 percent higher efficiency for writes and 75.47 percent more efficiency for reads. The server side shows 68.10 percent higher efficiency for writes and 84.70 percent higher efficiency for reads. On the scalability side, NFS/RDMA incurred approximately half of the CPU overhead and for approximately half of the duration, but delivered 4 times the aggregate throughput compared to NFS.

No Need To Compromise

The choice between Send/Receive and RDMA is driven by the applications. There are cases where Send/Receive is the preferred option and other cases where RDMA is the natural choice. Zero-copy is one of those cases. Indeed, there is some overhead for registration and deregistration memory, but the message size point where is it much more beneficial to use the zero-copy approach is decreasing to hundreds of bytes, with the new IBTA and IETF definitions for InfiniBand and iWARP. Furthermore, RDMA was proven to enhance performance in other cases, such as MPI collective operations, overlapping, checkpointing, atomic access to shared memory data structures, storage applications, etc.

The Send/Receive and RDMA application interfaces to the adapters for InfiniBand and iWARP are open sourced and are constantly optimized under the auspices of the OpenFabrics Alliance. Helen Chen provided a descriptive diagram of the driver for InfiniBand and iWARP in her paper, showing the variety of the common application program interfaces. Moreover, since the drivers are open sourced, it is simple to modify the code for other propriety applications or to enhance the usage of RDMA or Send/Receive.

The OpenFabrics consortium includes all the major InfiniBand and iWARP companies, includes AMD, Cisco, Dell, IBM, Intel, LSI Logic, Oracle, Sun, the major USA labs and others, showing the wide-ranging adoption for RDMA technology.

OpenFabrics Diagram

For storage interconnect applications, the situation is different when compared to the MPI compute applications where RDMA and Send/Receive are used together. When the application requires large blocks of data to be moved, RDMA is the only option that provides the required performance, scalability and CPU overhead. It is common to demand optimal storage I/O and high compute I/O in for the same application. One example is when file reads and writes happen before and after the computational periods for the purpose of check pointing and restart mechanisms, etc. In this example, the ability to read and write large quantities of data without interrupting the CPUs is essential, especially when cluster size increases.

RDMA and Send/Receive in the same network provide the user with a variety of tools that are essential for achieving the best application performance and to be able to utilize the same network for multiple tasks, such as compute, storage and management. In the last decade, the industry had made huge progress, both in the network specification, and in the programming interface. With a wide variety of APIs and market adoption, RDMA has completed the missing parts that Send/Receive could not provide, and when combined together, they become the best, flexible, high-performance solution without compromise.

The author would like to thank Diego Crupnicoff, Michael Kagan, Dhabaleswar K. Panda, Sayantan Sur and Matthew Jon Koop for their input during reviews of this article.

—–

Gilad Shainer is a senior technical marketing manager at Mellanox technologies focusing on high performance computing. He joined Mellanox Technologies in 2001 to develop Mellanox's InfiniHost PCI-X Host Channel Adapter (HCA) device and later led the development of Mellanox's InfiniHost III Ex PCI Express HCA device. Gilad Shainer holds a MSc. degree (2001, Cum Laude) and a BSc. degree (1998, Cum Laude) in Electrical Engineering from the Technion Institute of Technology in Israel. He is also a member of the PCISIG PCI-X and PCI Express Working Groups and has contributed to the definition of the PCI-X 2.0 specifications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire