Why Pretend?

By Christopher C. Aycock, MS

October 6, 2006

InfiniBand and iWARP have industry heavyweights behind them, to be sure. But this kind of smug satisfaction has only led to a case of the Emperor's New Clothes in which no one is willing to admit to the inadequacy of RDMA in general and VIA in particular.

Kernel Bypass, Zero Copy, and Asynchronous Communication

Networks are a shared resource. Traditional networks such as Ethernet require that the resource be protected by the kernel, which presents a tremendous performance bottleneck when latency is an issue. Furthermore, data is copied to and from pre-allocated buffers, which can hurt bandwidth for large messages.

Many of today's high-performance networks from vendors such as Myricom and Quadrics handle the protection across process boundaries directly through the network interface card (NIC). This setup bypasses the kernel and lets communication occur at the user level, thereby removing the bottleneck of mode switching.

Most modern high-performance networks also have direct memory access (DMA) in which the NIC accesses main memory directly while the CPU is free to perform other tasks. DMA not only eliminates copying, but also permits communication to overlap with computation. This facet is similar to prefetching in the cache as it reduces the effective latency. Taking advantage of this feature in an application only requires asynchronous communication, which is represented as multithreaded designs in Sockets or as nonblocking primitives in MPI — MPI_Isend() and MPI_Irecv().

Send/Receive and RDMA

Most of the above capabilities are available through the widely-used two-sided semantics of Send/Receive communication. That is, the communication runs entirely at the user level, allows the local (sending) node to act without copying, and frees the CPU to perform other tasks. Send/Receive does have a drawback though: the remote (receiving) node must copy the message to its final destination; the benefit of zero-copy only exists for the sending node.

With one-sided semantics in remote direct memory access (RDMA), the receiving NIC uses DMA to place the data into a buffer that has been specified by the sending node. RDMA extends zero-copy benefits to the remote node.

For the NIC to access the data through RDMA, the user's page must actually be in memory and not on the disk. Pinning the page to physical memory requires a memory registration, which invokes the operating system. This is actually an expensive procedure as it requires the kernel and is exactly what high-performance networks are supposed to avoid!

Furthermore, the sending node must know the destination memory address on the receiving node. Most applications, such as those written in Sockets or MPI, will require that this information be exchanged prior to communication. The synchronization here is performed through the Send/Receive semantics in a rendezvous protocol, which adds even more overhead.

Workarounds for RDMA

It is possible to overcome RDMA's shortcomings and still realize the benefit of zero-copy communication on the remote node. Certain supercomputers such as the Blue Gene rely on a custom lightweight kernel that only runs one process; because there is no paging, there is no requirement for memory registration.

Alternatively, QsNet works by patching the kernel so that the NIC may access the appropriate data once the page has been loaded into memory. Patches are developed for very specific versions of the kernel based on assumptions regarding the Linux API. Given this level of required specificity, administering a cluster that involves kernel patches can be quite tedious.

As for InfiniBand, it is possible to rely on caching techniques. That is, if a certain memory region will be remotely accessed multiple times, then the software — an implementation of MPI, for example — may build a table of memory registrations on the receiving node.

In any case, synchronization remains unavoidable in most programs. The sending node must know the destination memory address on the remote node to perform RDMA. There are some special cases where the address will be known ahead of time, as in MPI-2's remote memory access functions — MPI_Put() and MPI_Get(). But these routines are not widely used and represent a niche application.

Specific Issues with the Virtual Interface Architecture (VIA)

MVAPICH is a port of MPICH to InfiniBand maintained by D. K. Panda's team at Ohio State University. This implementation provides a reference for other communication layers on VIA-based networks, such as InfiniBand and iWARP. Of particular interest is that OSU's collection of related research papers contain a series of design patterns for software on RDMA networks.

Design patterns are best-practice architecture that permit reuse of a solution to a common programming problem. Some language researchers, such as Paul Graham and Peter Norvig, believe that design patterns are really a sign that the underlying language is incomplete. After all, a pattern implies automation, and automation implies a machine.

By extension, the design patterns from OSU demonstrate that InfiniBand lacks the foundations that would best serve most of its users. Now some designers, such as John Hennessy and David Patterson, believe that an architecture should provide primitives and not solutions. But given that the (committee-defined) InfiniBand standard is over a thousand pages long, it should be fairly obvious which view the IB Trade Association holds.

In contrast, both the Elan and MX libraries (for QsNet and Myrinet, respectively) have been specifically built to present the common functionality required in most applications. The solution-oriented VIA community should have done the same with their libraries, such DAPL and the OpenFabrics verbs API.

Personal Notes

I was motivated to write this article after reading “A Tutorial of the RDMA Model” from IBM's Renato Recio, which in turn was a response to “A Critique of RDMA” from Myricom's Patrick Geoffray. I got the impression that Recio was writing to protect the image of VIA rather than provide a sound rebuttal to Geoffray's technical arguments about RDMA. For example, Geoffray's criticism that RDMA is not adequate for Sockets is met with the response that the user can rely on Extended Sockets or the Sockets Direct Protocol (SDP). Extended Sockets is a different library from Sockets, albeit somewhat similar; SDP is a protocol used above and beyond the RDMA paradigm. Geoffray essentially said that RDMA is handicapped and Recio responded that RDMA has a choice of crutches.

What is particularly telling is that Recio fell back on the old technique of using sales volume to justify technical soundness. He states, “it is interesting to note that almost twice as many new machines in the top100 are using InfiniBand than Myrinet.” This is like saying that Titanic was the best movie ever produced since it sold the most tickets. If IBM really did believe the sales-volume pitch, it would stop making POWER chips and simply bundle x86 with its servers.

I wrote this article as a knowledgeable end user; I will leave the marketing brochures to the vendors. At Oxford we used to believe that RDMA was a godsend for the BSP-style programming found in MPI-2 or Cray's SHMEM. Indeed, Geoffray's article states that RDMA networks “can be leveraged successfully for one-sided programming paradigms.” After having studied both the paradigms and the networks, I have come to the conclusion that models such as the partitioned global address space languages are really best suited for ccNUMA machines. And indeed, that is what RDMA is: a crude approximation of a non-commodity machine useful only for niche applications.

Sockets work just fine on vanilla Ethernet. MPI works on Ethernet. Google's MapReduce works on Ethernet. Maybe this is the architecture we should be building on.

The author would like to thank Richard Brent and Peter Strazdins for their comments on an earlier draft of this article.

—–

Christopher C. Aycock is wrapping up his PhD from Oxford University, where his thesis topic is in communications programming paradigms for high-performance networks. He is currently a visiting fellow at the Australian National University and can be reached via chris@hpcanswers.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This