Why Pretend?

By Christopher C. Aycock, MS

October 6, 2006

InfiniBand and iWARP have industry heavyweights behind them, to be sure. But this kind of smug satisfaction has only led to a case of the Emperor's New Clothes in which no one is willing to admit to the inadequacy of RDMA in general and VIA in particular.

Kernel Bypass, Zero Copy, and Asynchronous Communication

Networks are a shared resource. Traditional networks such as Ethernet require that the resource be protected by the kernel, which presents a tremendous performance bottleneck when latency is an issue. Furthermore, data is copied to and from pre-allocated buffers, which can hurt bandwidth for large messages.

Many of today's high-performance networks from vendors such as Myricom and Quadrics handle the protection across process boundaries directly through the network interface card (NIC). This setup bypasses the kernel and lets communication occur at the user level, thereby removing the bottleneck of mode switching.

Most modern high-performance networks also have direct memory access (DMA) in which the NIC accesses main memory directly while the CPU is free to perform other tasks. DMA not only eliminates copying, but also permits communication to overlap with computation. This facet is similar to prefetching in the cache as it reduces the effective latency. Taking advantage of this feature in an application only requires asynchronous communication, which is represented as multithreaded designs in Sockets or as nonblocking primitives in MPI — MPI_Isend() and MPI_Irecv().

Send/Receive and RDMA

Most of the above capabilities are available through the widely-used two-sided semantics of Send/Receive communication. That is, the communication runs entirely at the user level, allows the local (sending) node to act without copying, and frees the CPU to perform other tasks. Send/Receive does have a drawback though: the remote (receiving) node must copy the message to its final destination; the benefit of zero-copy only exists for the sending node.

With one-sided semantics in remote direct memory access (RDMA), the receiving NIC uses DMA to place the data into a buffer that has been specified by the sending node. RDMA extends zero-copy benefits to the remote node.

For the NIC to access the data through RDMA, the user's page must actually be in memory and not on the disk. Pinning the page to physical memory requires a memory registration, which invokes the operating system. This is actually an expensive procedure as it requires the kernel and is exactly what high-performance networks are supposed to avoid!

Furthermore, the sending node must know the destination memory address on the receiving node. Most applications, such as those written in Sockets or MPI, will require that this information be exchanged prior to communication. The synchronization here is performed through the Send/Receive semantics in a rendezvous protocol, which adds even more overhead.

Workarounds for RDMA

It is possible to overcome RDMA's shortcomings and still realize the benefit of zero-copy communication on the remote node. Certain supercomputers such as the Blue Gene rely on a custom lightweight kernel that only runs one process; because there is no paging, there is no requirement for memory registration.

Alternatively, QsNet works by patching the kernel so that the NIC may access the appropriate data once the page has been loaded into memory. Patches are developed for very specific versions of the kernel based on assumptions regarding the Linux API. Given this level of required specificity, administering a cluster that involves kernel patches can be quite tedious.

As for InfiniBand, it is possible to rely on caching techniques. That is, if a certain memory region will be remotely accessed multiple times, then the software — an implementation of MPI, for example — may build a table of memory registrations on the receiving node.

In any case, synchronization remains unavoidable in most programs. The sending node must know the destination memory address on the remote node to perform RDMA. There are some special cases where the address will be known ahead of time, as in MPI-2's remote memory access functions — MPI_Put() and MPI_Get(). But these routines are not widely used and represent a niche application.

Specific Issues with the Virtual Interface Architecture (VIA)

MVAPICH is a port of MPICH to InfiniBand maintained by D. K. Panda's team at Ohio State University. This implementation provides a reference for other communication layers on VIA-based networks, such as InfiniBand and iWARP. Of particular interest is that OSU's collection of related research papers contain a series of design patterns for software on RDMA networks.

Design patterns are best-practice architecture that permit reuse of a solution to a common programming problem. Some language researchers, such as Paul Graham and Peter Norvig, believe that design patterns are really a sign that the underlying language is incomplete. After all, a pattern implies automation, and automation implies a machine.

By extension, the design patterns from OSU demonstrate that InfiniBand lacks the foundations that would best serve most of its users. Now some designers, such as John Hennessy and David Patterson, believe that an architecture should provide primitives and not solutions. But given that the (committee-defined) InfiniBand standard is over a thousand pages long, it should be fairly obvious which view the IB Trade Association holds.

In contrast, both the Elan and MX libraries (for QsNet and Myrinet, respectively) have been specifically built to present the common functionality required in most applications. The solution-oriented VIA community should have done the same with their libraries, such DAPL and the OpenFabrics verbs API.

Personal Notes

I was motivated to write this article after reading “A Tutorial of the RDMA Model” from IBM's Renato Recio, which in turn was a response to “A Critique of RDMA” from Myricom's Patrick Geoffray. I got the impression that Recio was writing to protect the image of VIA rather than provide a sound rebuttal to Geoffray's technical arguments about RDMA. For example, Geoffray's criticism that RDMA is not adequate for Sockets is met with the response that the user can rely on Extended Sockets or the Sockets Direct Protocol (SDP). Extended Sockets is a different library from Sockets, albeit somewhat similar; SDP is a protocol used above and beyond the RDMA paradigm. Geoffray essentially said that RDMA is handicapped and Recio responded that RDMA has a choice of crutches.

What is particularly telling is that Recio fell back on the old technique of using sales volume to justify technical soundness. He states, “it is interesting to note that almost twice as many new machines in the top100 are using InfiniBand than Myrinet.” This is like saying that Titanic was the best movie ever produced since it sold the most tickets. If IBM really did believe the sales-volume pitch, it would stop making POWER chips and simply bundle x86 with its servers.

I wrote this article as a knowledgeable end user; I will leave the marketing brochures to the vendors. At Oxford we used to believe that RDMA was a godsend for the BSP-style programming found in MPI-2 or Cray's SHMEM. Indeed, Geoffray's article states that RDMA networks “can be leveraged successfully for one-sided programming paradigms.” After having studied both the paradigms and the networks, I have come to the conclusion that models such as the partitioned global address space languages are really best suited for ccNUMA machines. And indeed, that is what RDMA is: a crude approximation of a non-commodity machine useful only for niche applications.

Sockets work just fine on vanilla Ethernet. MPI works on Ethernet. Google's MapReduce works on Ethernet. Maybe this is the architecture we should be building on.

The author would like to thank Richard Brent and Peter Strazdins for their comments on an earlier draft of this article.

—–

Christopher C. Aycock is wrapping up his PhD from Oxford University, where his thesis topic is in communications programming paradigms for high-performance networks. He is currently a visiting fellow at the Australian National University and can be reached via chris@hpcanswers.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This