Why Pretend?

By Christopher C. Aycock, MS

October 6, 2006

InfiniBand and iWARP have industry heavyweights behind them, to be sure. But this kind of smug satisfaction has only led to a case of the Emperor's New Clothes in which no one is willing to admit to the inadequacy of RDMA in general and VIA in particular.

Kernel Bypass, Zero Copy, and Asynchronous Communication

Networks are a shared resource. Traditional networks such as Ethernet require that the resource be protected by the kernel, which presents a tremendous performance bottleneck when latency is an issue. Furthermore, data is copied to and from pre-allocated buffers, which can hurt bandwidth for large messages.

Many of today's high-performance networks from vendors such as Myricom and Quadrics handle the protection across process boundaries directly through the network interface card (NIC). This setup bypasses the kernel and lets communication occur at the user level, thereby removing the bottleneck of mode switching.

Most modern high-performance networks also have direct memory access (DMA) in which the NIC accesses main memory directly while the CPU is free to perform other tasks. DMA not only eliminates copying, but also permits communication to overlap with computation. This facet is similar to prefetching in the cache as it reduces the effective latency. Taking advantage of this feature in an application only requires asynchronous communication, which is represented as multithreaded designs in Sockets or as nonblocking primitives in MPI — MPI_Isend() and MPI_Irecv().

Send/Receive and RDMA

Most of the above capabilities are available through the widely-used two-sided semantics of Send/Receive communication. That is, the communication runs entirely at the user level, allows the local (sending) node to act without copying, and frees the CPU to perform other tasks. Send/Receive does have a drawback though: the remote (receiving) node must copy the message to its final destination; the benefit of zero-copy only exists for the sending node.

With one-sided semantics in remote direct memory access (RDMA), the receiving NIC uses DMA to place the data into a buffer that has been specified by the sending node. RDMA extends zero-copy benefits to the remote node.

For the NIC to access the data through RDMA, the user's page must actually be in memory and not on the disk. Pinning the page to physical memory requires a memory registration, which invokes the operating system. This is actually an expensive procedure as it requires the kernel and is exactly what high-performance networks are supposed to avoid!

Furthermore, the sending node must know the destination memory address on the receiving node. Most applications, such as those written in Sockets or MPI, will require that this information be exchanged prior to communication. The synchronization here is performed through the Send/Receive semantics in a rendezvous protocol, which adds even more overhead.

Workarounds for RDMA

It is possible to overcome RDMA's shortcomings and still realize the benefit of zero-copy communication on the remote node. Certain supercomputers such as the Blue Gene rely on a custom lightweight kernel that only runs one process; because there is no paging, there is no requirement for memory registration.

Alternatively, QsNet works by patching the kernel so that the NIC may access the appropriate data once the page has been loaded into memory. Patches are developed for very specific versions of the kernel based on assumptions regarding the Linux API. Given this level of required specificity, administering a cluster that involves kernel patches can be quite tedious.

As for InfiniBand, it is possible to rely on caching techniques. That is, if a certain memory region will be remotely accessed multiple times, then the software — an implementation of MPI, for example — may build a table of memory registrations on the receiving node.

In any case, synchronization remains unavoidable in most programs. The sending node must know the destination memory address on the remote node to perform RDMA. There are some special cases where the address will be known ahead of time, as in MPI-2's remote memory access functions — MPI_Put() and MPI_Get(). But these routines are not widely used and represent a niche application.

Specific Issues with the Virtual Interface Architecture (VIA)

MVAPICH is a port of MPICH to InfiniBand maintained by D. K. Panda's team at Ohio State University. This implementation provides a reference for other communication layers on VIA-based networks, such as InfiniBand and iWARP. Of particular interest is that OSU's collection of related research papers contain a series of design patterns for software on RDMA networks.

Design patterns are best-practice architecture that permit reuse of a solution to a common programming problem. Some language researchers, such as Paul Graham and Peter Norvig, believe that design patterns are really a sign that the underlying language is incomplete. After all, a pattern implies automation, and automation implies a machine.

By extension, the design patterns from OSU demonstrate that InfiniBand lacks the foundations that would best serve most of its users. Now some designers, such as John Hennessy and David Patterson, believe that an architecture should provide primitives and not solutions. But given that the (committee-defined) InfiniBand standard is over a thousand pages long, it should be fairly obvious which view the IB Trade Association holds.

In contrast, both the Elan and MX libraries (for QsNet and Myrinet, respectively) have been specifically built to present the common functionality required in most applications. The solution-oriented VIA community should have done the same with their libraries, such DAPL and the OpenFabrics verbs API.

Personal Notes

I was motivated to write this article after reading “A Tutorial of the RDMA Model” from IBM's Renato Recio, which in turn was a response to “A Critique of RDMA” from Myricom's Patrick Geoffray. I got the impression that Recio was writing to protect the image of VIA rather than provide a sound rebuttal to Geoffray's technical arguments about RDMA. For example, Geoffray's criticism that RDMA is not adequate for Sockets is met with the response that the user can rely on Extended Sockets or the Sockets Direct Protocol (SDP). Extended Sockets is a different library from Sockets, albeit somewhat similar; SDP is a protocol used above and beyond the RDMA paradigm. Geoffray essentially said that RDMA is handicapped and Recio responded that RDMA has a choice of crutches.

What is particularly telling is that Recio fell back on the old technique of using sales volume to justify technical soundness. He states, “it is interesting to note that almost twice as many new machines in the top100 are using InfiniBand than Myrinet.” This is like saying that Titanic was the best movie ever produced since it sold the most tickets. If IBM really did believe the sales-volume pitch, it would stop making POWER chips and simply bundle x86 with its servers.

I wrote this article as a knowledgeable end user; I will leave the marketing brochures to the vendors. At Oxford we used to believe that RDMA was a godsend for the BSP-style programming found in MPI-2 or Cray's SHMEM. Indeed, Geoffray's article states that RDMA networks “can be leveraged successfully for one-sided programming paradigms.” After having studied both the paradigms and the networks, I have come to the conclusion that models such as the partitioned global address space languages are really best suited for ccNUMA machines. And indeed, that is what RDMA is: a crude approximation of a non-commodity machine useful only for niche applications.

Sockets work just fine on vanilla Ethernet. MPI works on Ethernet. Google's MapReduce works on Ethernet. Maybe this is the architecture we should be building on.

The author would like to thank Richard Brent and Peter Strazdins for their comments on an earlier draft of this article.

—–

Christopher C. Aycock is wrapping up his PhD from Oxford University, where his thesis topic is in communications programming paradigms for high-performance networks. He is currently a visiting fellow at the Australian National University and can be reached via [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This