Handle with Care

By Herbert Wenk

October 13, 2006

Statistically, every person in Germany spends about 2700 Euros per year keeping himself or herself alive and well, which amounts to about 11 percent of GNP or around 230 billion Euros. Although the majority of illnesses can be treated fairly well nowadays, doctors do encounter problems, where a medicine is not effective due to a specific predisposition of a person, or where one has to decide amongst several alternatives to find the optimum treatment, e.g., surgery.

Thanks to modern tools such as radiography or NMR, looking inside a patient is no longer a problem. The deciphering of the human genome and the associated research of the human proteome has enhanced our understanding of processes on the molecular and cellular level. This huge body of information however is of little use when dynamic or bio-mechanic effects are involved. Examples are the flow of blood in arteries, air in lungs, plastic surgery involving bone tissue, or patient-specific major implants. For the patient, to find out the best possible therapy, a trial-and-error approach is out of question. However, a new class of simulation tools is starting to appear that makes such an approach feasible for the doctors by providing a realistic 3-D patient-specific numerical model of a body or body parts, where different approaches can be tested and optimised without direct patient involvement.

In the public eye, eHealth is still mainly associated with applications such as databases, networking of data, hospital administration and data classification. These new upcoming applications play a more active role and promise to optimize patients' treatment rather than their care. Through massive compute power, they promise to distil a new level of insight and provide a tool for patient-specific diagnosis and therapy support.

In a recent briefing at NEC's Computers & Communications Research lab (CCRLE) in St. Augustin, Germany, Dr. Guy Lonsdale, the Centre's manager, and Professor Daniel Ruefenacht of the University Hospital of Geneva, gave an overview on the trends and goals of the European eHealth program and a specific implementation concerning the treatment of ballooning arteries, so called aneurysms, especially in the human brain. Estimations are that 2 to 4 percent of the population harbours at least one aneurysm.

Since 2000, the CCRLE has been involved in the European eHealth program. With SimBio, a toolset has been developed that enabled the use of actual scan data from patients to build a numerical model of required body parts as the basis for further simulation to support the diagnosis. In 2002, a second toolset, GEMSS (Grid enabled medical simulation services) was developed to provide a framework for a doctor's interface, a secure workflow and service allocation capabilities towards a future set of service based eHealth applications.

This know-how was brought into the new EU project @neurist (http://www.aneurist.org/), which was started this year and is one of the flagship projects in eHealth, bringing together about 30 partners. CCRLE is involved in key parts of the Grid infrastructure and the simulation tool chain.

Operating on the brain is very risky. Therefore one would like to have some reliable means to decide on its necessity. Simulation comes to the rescue. Understanding aneurysms involves biomechanics (both haemodynamics — the flow of the blood — and structural mechanics — the deformation of the vessel wall), biology (the properties and behaviour of the substances and materials) and micro mechanics (the interaction between structures in the blood and the vessel's wall). This highly complex environment requires a large amount of compute power both to be able to make reliable predictions on the stability of the aneurysm as well as determine the effects on flow patterns and pressure distributions caused by inserting supports (stents) into the artery. The idea is to have the blood stagnate within the aneurysm so that it has time to clot and fill the void, making a rupture of the artery impossible. In terms of computational fluid dynamics, this is a complex flow fluid-structure interaction with chemical/biological processes on a variety of time-scales.

Using the NEC SX-8 of Stuttgart's High Performance Compute Centre, the CCRLE in collaboration with the University of Sheffield succeeded in modelling the flow in such a complicated environment while also allowing for blood clotting effects. The modelling was based on the Lattice-Boltzmann method (see e.g., http://www.science.uva.nl/research/scs/projects/lbm_web/lbm.html). Also, the first results on the effectiveness of different stent designs in redirecting the blood flow were achieved by research coordinated by the University Hospital of Geneva. These results will be taken further in another EU research project NEC is involved in, called COAST, where the effects of such devices for treating coronary artery diseases, including blood clotting and drug transport, will be simulated based on a hierarchical aggregation of coupled cellular automata.

With the availability of high performance computers within a Grid environment, the medical sector is now able to add simulation to visualisation — a step that the general industry had already taken decades ago.

—–

With 25 years of experience in IT, Herbert Wenk ([email protected]) is working as a consultant and technical journalist in Germany.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire