National LambdaRail President Explains Research Focus

By By Tom West, President

October 13, 2006

I have been asked: Why is National LamdbaRail (NLR) focusing so much on facilitating network research and “big” science applications as its core mission? Is it not as important to give equal or greater attention to the networking needs of the broader research and education (R&E) community?

In answering these questions, permit me to draw a comparison to the historical development and evolution of the great cities around the world.

When investing in real estate today, you are told that the principle focus should be on Location! Location! Location! The root of this principle is evident in the development and evolution of the major cities and regions around the globe. In most instances, the selection of the location for each of these cities was based on such strategic factors as: safety and security; access to basic necessities and resources; transportation; and, the potential to develop commerce. As each city's core developed and prospered, the community grew and expanded geographically. Over time, each great city not only evolves, but also periodically reinvents its core in order to stay vibrant and respond to the changing needs of the society. The cycle, never ending, continues to repeat itself as new needs drive evolutions.

From my perspective, the development and evolution of networking in our R&E community has followed a similar cyclic path over the past four decades with the start of each cycle focused on Research! Research! Research!

In the late 60s, the revolutionary developments in packet networks and related technologies came from university researchers. Combined with DARPA's funding and deployment of the ARPAnet, these innovations created the initial core technologies and seminal implementation for the Internet. From that era forward, both research inventions and the specific needs of the researchers have been the core drivers for the major advances in networking for the general R&E community as well as for society at large.

Inspired by the pioneering researcher-driven development of APRAnet, the beginning network needs of the broader university and lab community were addressed by a major expansion and evolution of the ARPAnet and by the implementations of BITNET and CSnet. Together these efforts were able to bring much larger numbers of institutions online enabling broad use by researchers, educators, students and even administrators. By leveraging additional platforms (in BITNET's case via what were often institutional IBM mainframes reconfigured by computer center folks to enable a few forms of network capabilities) and funding sources, these much larger numbers established fertile ground for creating and deriving the benefits of what Metcalf came to call “network effects.”

In the late-1980s, the cycle renewed itself with the research community-driven convergence on the increasingly evolved core Internet protocols of the ARPAnet. Our research community created related usable network capabilities and applications like broadly usable email, ftp and listserv. And, to meet the growing needs of researchers, the use of networks in R&E became a key driver in the creation and rapid expansion, evolution and extension of the Internet protocol-based networks such as NSFnet, ESnet and DREN. As a companion to and major enabler of the NSFnet, regional research and education networks (the NSF Regionals) were developed as the most powerful means for extending the reach of, democratizing access to, and sustaining R&E networks by explicitly recognizing and addressing the diverse geographical and demographic realties of networks.

Advanced networking for the researchers and our larger R&E community suffered a serious setback in the early 1990's when NSFnet became a victim of its own success and was 'privatized' and the program discontinued. This came during a cycle in which many of the regional R&E networks and research community-based Internet providers were spun off, and either became or were sold off to the emerging commercial ISP's. While this helped enable the worldwide Internet revolution, it unfortunately left most of the R&E community without either a voice in (let alone control over) network capabilities and services, or direct access to innovating with (or configuring around) underlying network technology. The good news was that “our” Internet had become pervasive. The bad news was that we had lost nearly all control and were reduced to buying one-size-fits-all capabilities that were being evolved for mass market rather than research, education and clinical needs. And our network researchers had lost the ability to do network and network-based research and to innovate in those areas in big ways.

With the discontinuation of the NSFnet, the NSF sought to address the high-end advanced networking infrastructure needs and opportunities of the researchers with support for the vBNS program. This initiative, combined with the CoREN and other activities of the surviving Regionals, sustained the continuing regionals and stimulated their and other regional group's evolution into GigaPops. The GigaPops, in turn, worked for the creation of UCAID (the corporate entity underlying Internet2) and the development of the Abilene Network in a partnership with Qwest and Nortel. With this new cycle, our community enabled the formation of a state-of-the-commercial-art, packet-over-SONET shared layer 3 service and the ability to control bandwidth and topology. During this period, state/regional networks and GigaPops grew and developed rapidly to meet the burgeoning educational needs throughout the community.

Shortly after the beginning of this century, three new drivers emerged that called for a major leap forward in advanced networking to meet the needs of the researchers in the community and the community at large. These included:

Need One: More and more manageable bandwidth for “big” or specialized applications' research

  • High-end science needs terabits and petabytes
  • Predictable quality interconnect
  • Immersive (i.e. often high-resolution and low latency) presence
  • Deterministic control loops
  • Bit rate of reality-10 gigabits soon to be 40 gigabits, but more importantly given the realities of the instruments and cluster computers and storage systems many parallel 10 gigabits

Need Two: Breakable and researcher-controlled networks including waves for network research

  • New protocols
  • New devices
  • New architectures

Need Three: Underlying owned fiber

  • Ensuring that the limitations on what our communities can pursue are based on what we can imagine and afford, rather than what services telecommunications companies are willing to sell us and the conditions under which they are willing to sell them
  • Enabling partnering in truly new optical domains
  • Keeping prices from providers low

The result, National LambdaRail (NLR), has been the implementation of a fully operational national networking physical infrastructure based upon owned and lit fiber. This fiber is linked with multiple Regional Optical Network (RON) physical infrastructures that are RON-owned. By enabling the implementation of multiple networks, both experimental and production, to facilitate technology innovation, discovery and sharing of new knowledge, this new networking collaboratory is providing for the concurrent advancement of:

  • Network research;
  • Next generation network-based research applications in science, engineering, medicine and other disciplines; and,
  • Education program delivery at all levels — K through 20.

By focusing on facilitating Research! Research! Research!, NLR, in partnership with the RONs, continues the network innovation cycle and ensures that all the participants in the research and education community reap the benefits of big, fast, customizable networks. The reality is that researchers are the innovators — the folks who think big and drive myriad ways to create the networks of the future today. We in the R&E community can effectively learn from them and extend and recreate these innovative networks for universities, labs, the greater educational community as well as our society at large.

The cycle continues. What are the next drivers? Let's all learn together by serving and studying Research! Research! Research!

—–

Tom West is President and Chief Executive Officer of National LambdaRail, a major initiative of U.S. research universities and private sector technology companies to provide a national scale infrastructure for research and experimentation in networking technologies and applications. Over the years, West has served as an advisor and consultant to a number of higher education institutions and systems, private corporations and state governments. West has been actively involved in national research and education networking in the United States for nearly two decades.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire