The Real Deal

By Deb Aronson

October 13, 2006

With innovative algorithms and TeraGrid resources at PSC, economist John Rust of the University of Maryland is solving the most realistically specified versions yet attempted of the life-cycle model, a central paradigm of economics modeling.

Who among us hasn’t pondered strange human behaviors? Some people invest in beanie babies. Some wear bell-bottom hip huggers. Some of us live in populous cities located in earthquake or flood zones.

Despite many irrational human behaviors, economists have the professional task of making reliable predictions about the economy, a task that involves trying to find underlying logic in the processes by which people make decisions in consumer spending, housing, employment, savings, healthcare and many other economic-related realms of activity. One of the best tools economists have to help forecast economic weather, despite the inherent vagaries of human decision-making, is the life-cycle model.

“The life-cycle model is one of the central paradigms in economics,” says John Rust, professor of economics at the University of Maryland at College Park. “With this approach, observed behavior can be explained as rational ‘best responses’ based on the structure of economic institutions, such as the social security system, and the real uncertainties individuals face regarding health, earnings, prices and many other uncertainties.”

The life-cycle model mathematically formulates decision-making as a series of sequential decisions influenced by variables over the course of a lifetime. It has been applied usefully in many areas of policy making. Nevertheless, the model’s predictive ability has been limited because it hasn’t been possible to solve complex formulations that account for a realistically broad range of variables. “The theoretical predictions of the model,” says Rust, “haven’t been well understood since, except for trivially simple special cases, the model doesn’t have a closed-form solution.”

Beginning several years ago, Rust used PSC’s Cray T3E to develop novel algorithms that, for the first time, make it possible to apply the computational muscle of massively parallel systems to the life-cycle model. With this powerful approach, he and graduate students Joseph Nichols and Gaobo Pang have used LeMieux, PSC’s terascale system, to solve the largest, most realistically specified versions of the life-cycle model ever attempted.

Their approach has yielded insights in a number of areas. Nichols, now at the Federal Reserve, used LeMieux to develop the first realistic life-cycle model treatment of housing and mortgages, resolving a previously puzzling question about why people hold a large fraction of investment in housing assets. A study by Pang, used LeMieux and a detailed life-cycle model to find that, contrary to expectation, tax-deferred savings accounts would lead to substantial new savings and could induce earlier retirement.

With his innovative algorithms and LeMieux, Rust — an advisor to the Social Security Administration during the Clinton presidency — has applied the life-cycle model in many areas. Among several government-policy related studies, he developed and tested a proposal by which the Social Security Administration can improve its disability benefit process, targeting those who are truly disabled at less cost than current procedures.

“When the life-cycle model is fully estimated and tested,” says Rust, “it has a number of practical uses for predicting the impacts of proposed changes to the Social Security program, including raising the early retirement age, introducing individual accounts, and changing Medicare coverage.” Modeling these proposed changes instead of passing them with no prior study can protect the American public, says Rust, from becoming “inadvertent crash-test dummies.”

Most interesting, perhaps, in Rust’s work with LeMieux are the surprises that emerge from the ability to solve more realistic formulations of the model — such as his recent work on a long-puzzling question about decline in consumption after retirement. Contrary to prior studies, Rust’s computations — taking into account variables not before considered — show that this decline is a rational response consistent with the life-cycle model. The result has stirred controversy.

“This is the power of computational economics,” says Rust, “to arrive at results we’re not able to anticipate by our economic intuitions from simpler versions of the model. It takes supercomputing to show how basically simple, elegant equations can yield answers we would never guess at or otherwise be able to see.”

Breaking the Curse

How do you quantify the complexities of human behavior? Economists have wrestled with this problem since at least the 1940s, when researchers in a number of fields — notably John von Neumann and Oskar Morgenstern — arrived at an approach called “backward induction.” In the simplest terms, backward induction means starting at the end and working backward to see what decisions led to the final outcome.

The life-cycle model uses backward induction and assumes that people try to make the best decisions possible, based on the information available to them. The beauty of the model is that it can accommodate uncertainty — saving for retirement being a classic example. No one knows, in a precise way, how much to save since no one knows how long they’ll live or what kinds of health problems they might experience, not to mention future rates of inflation or other economic factors.

The life-cycle model, furthermore, is predicated on preferences and beliefs — such as individual priorities about leisure versus work or perceptions about future health and longevity. Rust’s algorithms implementing the model are best described as “polyalgorithms” — an inner algorithm does the backward induction (often called “dynamic programming”) within an outer algorithm that searches for values of the preferences and beliefs parameters. The inner algorithm solves the model hundreds or thousands of times to find optimal decisions and iterates back and forth with the outer algorithm until the predicted behavior matches well with observed behavior over the life cycle.

Although variables will change and details of the model specification differ, life-cycle models can be applied to a huge variety of problems. “The life-cycle model has the ability to provide an explanation for almost everything we do in our lives,” says Rust, “starting with child rearing, learning and schooling, dating and sex, going to college, searching for the first job, getting married, buying a first home, choosing whether to have children and how many, saving for their college and your retirement, or deciding when to retire.”

A serious limitation of the life-cycle model has been the so-called “curse of dimensionality.” For each decision cycle, the program must find optimal values for the variables, and a single solution requires many billions of algebraic operations. For every variable added, increasing its realism, the computing time increased exponentially. Rust’s novel algorithms introduce a randomizing routine that, in effect, breaks the curse of dimensionality. He achieves linear scaling on parallel architectures for as many as 800 processors, making it possible to solve problems that would take many hours on a single processor in a matter of minutes on a parallel system such as LeMieux.

The Problem With Toys

Rust’s recent modeling of retirement consumption goes beyond prior life-cycle modeling of this problem and suggests — contrary to prevailing wisdom — that, with a sufficiently realistic statement of the life-cycle model, retirement data that’s been seen as “irrational” can be explained as a rational response. By taking into account the “labor-effect factor” — the possibility that people choose to retire earlier with less income than they otherwise might, because they value leisure — his modeling arrived at a new way of fitting the model with observed behavior.

Earlier this year in an invited talk at the Federal Reserve Board in Chicago, Rust stirred controversy when he presented these findings. Previous work on this problem has relied on a concept called “consumption smoothing” — which assumes people adjust consumption gradually in response to anticipated events. Skepticism about his finding, Rust believes, comes in part from reliance on life-cycle models — “toy models” — that don’t account realistically for the choices people face as retirement nears. Consumption smoothing is a strong intuition that economists arrived at from toy models, and “it doesn’t really generalize.”

The inadequately specified “toy models” can lead to bad or unnecessary policy changes. “Some economists point to the drop in consumption after retirement as ‘proof’ that individuals are myopic,” says Rust, “and experts therefore think that having a large, mandatory Social Security program is the way to protect these poor decision makers in old age and keep them out of poverty. My work indicates that the drop in consumption need not be a sign of myopia and can indeed be an optimal response by a rational, forward-looking consumer. In general, if people are rational, it only hurts them when the government forces them to save in a certain way, especially if it makes them save too much in the early part of their life when they are liquidity constrained.”

Beyond the challenging theoretical insights from Rust’s work, there are significant practical applications. From a public policy perspective, says Rust, being able to model human behavior at this level of detail is far more cost effective than attempting to measure behaviors in a population.

“These models can get so complex,” he says, “that it’s only through what the supercomputer shows us that we can open our eyes and think in new ways. This represents an important contribution to the science of economics that, I believe, will become more and more important over time — as the tools become more powerful and more economists learn to use them.”

—–

For more information, including graphics, visit http://www.psc.edu/science/2006/realdeal/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This